

First quantization scattering on a quantum computer.

<u>Arianna Crippa</u> Yahui Chai Karl Jansen Stefan Kühn Francesco Tacchino Ivano Tavernelli

12/06/2023

Table of contents

• Represent a Gaussian wave packet on a quantum circuit: Kitaev-Webb algorithm

+ generalisation to two systems

- Time evolution of the wave packets
- Proposal of interaction

Kitaev-Webb algorithm^[1]

• Given a Gaussian wave packet

$$\psi_{\sigma,\mu}(x) = \frac{1}{\sqrt{\sigma\sqrt{\pi}}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

where μ in the mean of the wave packet and σ is the standard deviation and

$$\int_{-\infty}^{+\infty} \psi^2(x) dx = 1$$

 In order to develop the algorithm on a finite system, we consider the Gaussian to be a function of an integer value *i*,

$$\tilde{\psi}_{\sigma,\mu}(i) = \frac{1}{\sqrt{f(\sigma,\mu)}} e^{-\frac{(i-\mu)^2}{2\sigma^2}}$$

where
$$f(\mu, \sigma) = \sum_{n=-\infty}^{\infty} e^{-\frac{(n-\mu)^2}{\sigma^2}} \stackrel{\sigma \gg 1}{\sim} \sigma \sqrt{\pi}$$
.

[1]A. Kitaev, W.A. Webb, "Wavefunction preparation and resampling using a quantum computer",2009

12/06/2023

• We define a new periodic function with period 2^N

$$\xi_{\sigma,\mu,N}(i) = \sum_{j=-\infty}^{\infty} \frac{1}{\sqrt{f(\mu,\sigma)}} \exp\left[-\frac{(i+j\cdot 2^N - \mu)^2}{2\sigma^2}\right]$$

it allows us to define the quantum state

$$\xi_{\sigma,\mu,N}\rangle = \sum_{i=0}^{2^{N}-1} \xi_{\sigma,\mu,N}(i) \left|i\right\rangle$$

• For μ , $2^N - \mu \gg \sigma \gg 1$, this state is very close to a Gaussian with mean μ and standard deviation σ .

• We define a new periodic function with period 2^N

$$\xi_{\sigma,\mu,N}(i) = \sum_{j=-\infty}^{\infty} \frac{1}{\sqrt{f(\mu,\sigma)}} \exp\left[-\frac{(i+j\cdot 2^N - \mu)^2}{2\sigma^2}\right]$$

it allows us to define the quantum state

$$\xi_{\sigma,\mu,N}\rangle = \sum_{i=0}^{2^N-1} \xi_{\sigma,\mu,N}(i) \left|i\right\rangle$$

• For μ , $2^N - \mu \gg \sigma \gg 1$, this state is very close to a Gaussian with mean μ and standard deviation σ .

How can we apply these operations on a quantum circuit?

Quantum Circuits

CLASSICAL

- Fundamental concept: bit
- States: 0 or 1

QUANTUM

- Fundamental concept: Qubit
- States: 0, 1 or linear combination

$$|\psi
angle = \cosrac{ heta}{2}\left|0
ight
angle + e^{i\phi}\sinrac{ heta}{2}\left|1
ight
angle$$

Quantum gates

 $|1\rangle$

• With a recursive description of the state,

$$\left|\xi_{\sigma,\mu,N}\right\rangle = \left|\xi_{\frac{\sigma}{2},\frac{\mu}{2},N-1}\right\rangle \otimes \cos\alpha \left|0\right\rangle + \left|\xi_{\frac{\sigma}{2},\frac{\mu-1}{2},N-1}\right\rangle \otimes \sin\alpha \left|1\right\rangle,$$

leads to an algorithm for preparing it.

Results for 1 wave packet on 6 qubits

With this method we can exploit the scaling of number of qubits N to represent a large system (2^N)

Results for 1 wave packet: phase^[2]

This gives an initial momentum to the packet.

[2]A Macridin et al. ,Digital quantum computation of fermion-boson interacting systems, 2018

12/06/2023

Results for 1 wave packet: time evolution

By applying the QFT and a set of phase gates we get

Results for 2 wave packets

We want the dynamics of 2 systems, so we generalise the previous algorithm:

Results for 2 wave packets

With the previous circuit we obtain two Gaussians:

12/06/2023

Arianna Crippa 14

Next step: interaction

General solution of the time evolution of two interacting harmonic oscillators

David Edward Bruschi,^{1, 2}, * G. S. Paraoanu,³ Ivette Fuentes A,⁴ Frank K. Wilhelm,¹ and Andreas W. Schell^{5, 6, 2} ¹Theoretical Physics, Universität des Saarlandes, 66123 Saarbrücken, Germany[†] ²Central European Institute of Technology (CEITEC), Brno University of Technology, 621 00 Brno, Czech Republic ³QTF Centre of Excellence, Department of Applied Physics, Aalto University School of Science, FI-00076 AALTO, Finland ⁴School of Mathematical Sciences, University of Nottingham, NG7 2RD, Nottingham, UK[‡] ⁵Institut für Festkörperphysik, Leibniz Universität Hannover, 30167 Hannover, Germany ⁶Physikalisch-Technische Bundesanstalt, 38116 Braunschweig, Germany (Dated: February 15, 2021)

 $\hat{H} = \hat{H}_0 + V(\hat{a}, \hat{b}, \hat{a}^{\dagger}, \hat{b}^{\dagger}),$ (3)

where $\hat{H}_0 = \hbar \omega_a \hat{a}^{\dagger} \hat{a} + \hbar \omega_d \hat{b}^{\dagger} \hat{b}$ denotes the free Hamiltonian (we have discarded the zero point energy constant), and now the potential V is obtained as a combination of terms that are quadratic in the new operators.

The potential can take, for example, the form $V(\hat{a}, \hat{b}, \hat{a}^{\dagger}, \hat{b}^{\dagger}) = g(\hat{a}\,\hat{b}^{\dagger} + \hat{a}^{\dagger}\,\hat{b} + \hat{a}\,\hat{b} + \hat{a}^{\dagger}\,\hat{b}^{\dagger})$, and in this

Next step: interaction

Gaussian wave packets:m=1.0, p01=1.0, p02=-1.0, omega1=2.0, omega2=2.0, g_V in [0. 0.5 1. 1.5 2.] T_tot=0.1

Entanglement entropy:m=1.0, p01=1.0, p02=-1.0, omega1=2.0, omega2=2.0

to be continued..

12/06/2023

Thank you.

Questions?

CONTACT: quantum-zeuthen.desy.de

arianna.crippa@desy.de

Given a probability $\{p_i\}$ how can we create a quantum superposition of the form $|\psi(\{p_i\})\rangle = \sum_i \sqrt{p_i} |i\rangle$ (where *i* in range of *N* values and $\{p_i\}$ discretized version of p(x))?

[1] Lov Grover and Terry Rudolph, 2002

Superpositions of integrable probability distributions

Given a probability $\{p_i\}$ how can we create a quantum superposition of the form $|\psi(\{p_i\})\rangle = \sum_i \sqrt{p_i} |i\rangle$ (where *i* in range of *N* values and $\{p_i\}$ discretized version of p(x))?

1) Assume the distribution is divided into 2^m regions and that we have a *m* qubit state,

$$|\psi_m\rangle = \sum_{i=0}^{2^m - 1} \sqrt{p_i^{(m)}} |i\rangle$$

probability for random variable x to lie in region *i* ($p_0^{(m)} \equiv$ probab. x to lie in leftmost region $p_1^{(m)} \equiv$ probab. to lie in region adjacent to this)

2) Goal: show that we can subdivide these 2^m regions to a 2^{m+1} region discretisation of p(x), i.e. we want to add <u>1 qubit</u> to the previous expression to achieve

$$\sqrt{p_i^{(m)}} \ket{i} = \sqrt{\alpha_i} \ket{i} \ket{0} + \sqrt{\beta_i} \ket{i} \ket{1}$$

with $\alpha_i(\beta_i)$ probability for x to lie in left (right) half of region.

2) Goal: show that we can subdivide these 2^m regions to a 2^{m+1} region discretisation of p(x), i.e. we want to add <u>1 qubit</u> to the previous expression to achieve

$$\sqrt{p_i^{(m)}} \ket{i} = \sqrt{\alpha_i} \ket{i} \ket{0} + \sqrt{\beta_i} \ket{i} \ket{1}$$

with $\alpha_i(\beta_i)$ probability for x to lie in left (right) half of region.

3) if we can achieve this, then we have the state of m+1 qubits:

$$|\psi_{m+1}\rangle = \sum_{i=0}^{2^{m+1}-1} \sqrt{p_i^{(m+1)}} |i\rangle$$

2) Goal: show that we can subdivide these 2^m regions to a 2^{m+1} region discretisation of p(x), i.e. we want to add <u>1 qubit</u> to the previous expression to achieve

$$\sqrt{p_i^{(m)}} \ket{i} = \sqrt{\alpha_i} \ket{i} \ket{0} + \sqrt{\beta_i} \ket{i} \ket{1}$$

with $\alpha_i(\beta_i)$ probability for x to lie in left (right) half of region.

3) if we can achieve this, then we have the state of m+1 qubits:

$$|\psi_{m+1}\rangle = \sum_{i=0}^{2^{m+1}-1} \sqrt{p_i^{(m+1)}} |i\rangle$$

4) repeat until $2^m = N$.

Superpositions of integrable probability distributions

• **Example** of distribution $f(i) = \frac{\int_{x_L^i}^{\frac{x_R^i - x_L^i}{2}} p(x) dx}{\int_{x_L^i}^{x_R^i} p(x) dx}$, (x_L^i / x_R^i left/right boundaries of region i)

gives probability that, given x in region i, it also lies in left half.

• With a controlled rotation angle on qubit m+1, we obtain

$$\sqrt{p_i^{(m)}} \ket{i} \ket{0} \rightarrow \sqrt{p_i^{(m)}} \ket{i} (\cos \theta_i \ket{0} + \sin \theta_i \ket{1})$$

with $\theta_i \equiv \arccos \sqrt{f(i)}$

$$(N = 1):$$

$$|\xi_{\sigma,\mu,1}\rangle = \underbrace{\xi_{\sigma,\mu,1}(0)}_{\sigma,\mu,1}|0\rangle + \underbrace{\xi_{\sigma,\mu,1}(1)}_{\sigma,\mu,1}|1\rangle$$

$$\underbrace{\xi_{\sigma,\mu,1}(0)}_{j=-\infty} = \sum_{j=-\infty}^{\infty} \frac{1}{\sqrt{f(\mu,\sigma)}} \exp\left[-\frac{(j \cdot 2 - \mu)^2}{2\sigma^2}\right] = \frac{1}{\sqrt{f(\mu,\sigma)}} \sum_{j=-\infty}^{\infty} \exp\left[-\frac{(j - \frac{\mu}{2})^2}{2\frac{\sigma^2}{2}}\right] = \frac{\sqrt{f(\frac{\mu}{2},\frac{\sigma}{2})}}{\sqrt{f(\mu,\sigma)}}$$

$$\underbrace{\xi_{\sigma,\mu,1}(1)}_{j=-\infty} = \sum_{j=-\infty}^{\infty} \frac{1}{\sqrt{f(\mu,\sigma)}} \exp\left[-\frac{(1 + j \cdot 2 - \mu)^2}{2\sigma^2}\right] = \frac{\sqrt{f(\frac{\mu-1}{2},\frac{\sigma}{2})}}{\sqrt{f(\mu,\sigma)}}$$

• the wavefunction has 2 components with the sum over probabilities $f(\mu, \sigma) = f(\frac{\mu}{2}, \frac{\sigma}{2}) + f(\frac{\mu-1}{2}, \frac{\sigma}{2})$.

(**n T**

- >

$$(N = 1):$$
the quantities, $\xi_{\sigma,\mu,1}(0) = \frac{\sqrt{f(\frac{\mu}{2}, \frac{\sigma}{2})}}{\sqrt{f(\mu, \sigma)}}$ and $\xi_{\sigma,\mu,1}(1) = \frac{\sqrt{f(\frac{\mu-1}{2}, \frac{\sigma}{2})}}{\sqrt{f(\mu, \sigma)}}$

can be written in term of one angle

$$\alpha = \arccos \sqrt{f\left(\frac{\mu}{2}, \frac{\sigma}{2}\right)/f(\mu, \sigma)} = \arcsin \sqrt{f\left(\frac{\mu - 1}{2}, \frac{\sigma}{2}\right)/f(\mu, \sigma)}$$

• Let's define:
$$C(\mu, \sigma) \equiv \frac{\sqrt{f(\frac{\mu}{2}, \frac{\sigma}{2})}}{\sqrt{f(\mu, \sigma)}}$$
 and $S(\mu, \sigma) \equiv \frac{\sqrt{f(\frac{\mu-1}{2}, \frac{\sigma}{2})}}{\sqrt{f(\mu, \sigma)}}$

12/06/2023

.

Superpositions of integrable probability distributions

• **Example** of Gaussian distribution (μ =0.5, σ =1.0) (N = 1) $|\xi_{\sigma,\mu,1}\rangle = \xi_{\sigma,\mu,1}(0) |0\rangle + \xi_{\sigma,\mu,1}(1) |1\rangle$

$$\begin{array}{l} (N=2):\\ |\xi_{\sigma,\mu,1}\rangle = \frac{\sqrt{f(\frac{\mu}{4},\frac{\sigma}{4})}}{\sqrt{f(\mu,\sigma)}} \left| 00 \right\rangle + \frac{\sqrt{f(\frac{\mu-1}{4},\frac{\sigma}{4})}}{\sqrt{f(\mu,\sigma)}} \left| 01 \right\rangle + \frac{\sqrt{f(\frac{\mu-2}{4},\frac{\sigma}{4})}}{\sqrt{f(\mu,\sigma)}} \left| 10 \right\rangle + \frac{\sqrt{f(\frac{\mu-3}{4},\frac{\sigma}{4})}}{\sqrt{f(\mu,\sigma)}} \left| 11 \right\rangle \\ = \left[C(\frac{\mu}{2},\frac{\sigma}{2}) \left| 0 \right\rangle + S(\frac{\mu}{2},\frac{\sigma}{2}) \left| 1 \right\rangle \right] \otimes C(\mu,\sigma) \left| 0 \right\rangle + \left[C(\frac{\mu-1}{2},\frac{\sigma}{2}) \left| 0 \right\rangle + S(\frac{\mu-1}{2},\frac{\sigma}{2}) \left| 1 \right\rangle \right] \otimes S(\mu,\sigma) \left| 1 \right\rangle \end{aligned}$$

etc.

 $(\mathbf{M} \cdot \mathbf{n})$

Superpositions of integrable probability distributions

Next step: interaction

Interaction off

Gaussian wave packets:m=1.0, p01=1.0, p02=-1.0, omega1=1.0, omega2=1.0, g_V=5.0 T_tot=0.1

Interaction on

to be continued..