Track reconstruction of charged particles using a 4D quantum algorithm

Arianna Crippa^{1,2}, Lena Funcke³, Tobias Hartung⁴, Beate Heinemann^{1,5}, Karl Jansen¹, Annabel Kropf^{1,5}, Stefan Kühn¹, Federico Meloni¹, **David Spataro**^{1,5}, Cenk Tüysüz^{1,2}, Yee Chinn Yap¹

¹ Deutsches Elektronen Synchrotron DESY

² Humboldt-Universität zu Berlin

³ Universität Bonn

⁴ Northeastern University, London

⁵ Albert-Ludwigs-Universität Freiburg

Workshop on Quantum Computing, Larnaca 25 - 27/10/2023

HELMHOLTZ

Track reconstruction

- Tracking can be challenging
 - \rightarrow good detectors and algorithms needed
- Future collider facilities plan to use timing capability
 - \rightarrow 4D algorithms
- This talk:
 - 4D quantum algorithm for pattern recognition of charged particle tracks
 - Results for a Muon Collider detector as an example

Source: <u>https://home.cern/science/accelerators/muon-collider</u>

• Doublets

- Doublets
- Triplets

- Doublets
- **Triplets** \rightarrow exploit triplet relations!

Goal:

Identify triplets stemming from a single particle and

combine them to tracks

Pattern recognition for tracking

Doublets

Triplets \rightarrow exploit triplet relations!

QUBO Quadratic Unconstrained Binary Optimisation

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i$$
 (QUBO)

- **T**_i ∈ {0, 1}
- \mathbf{b}_{ij} : interaction
- **a**_i : quality

values based on **spatial** and/or **temporal** information

QUBO Quadratic <u>Unconstrained Binary Optimisation</u>

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j + \sum_{i=1}^{N} a_i T_i \qquad (\text{QUBO})$$

Minimise Hamiltonian cost function:

- Ground state \rightarrow best set of triplets
- $\mathbf{v}_{\text{binary}}$: $[T_1, T_2, T_3, \dots, T_N] \rightarrow [0, 1, 1, \dots, 0]$ as result

Computation:

- Matrix diagonalisation (analytic solution)
- Hybrid quantum-classical algorithm (VQE)

VQE - Variational Quantum Eigensolver

Timing information used for particle tracking

- Purpose: Reduce ambiguity and complexity of reconstructing trajectories
- Planned Phase-2 upgrade ATLAS(HGTD)/CMS(MIP):

Timing layers in forward direction to reduce pileup background

Muon Collider Tracking Detector

- Spatial resolution:
 - $\circ \quad VXD: 25x25 \ \mu m^2$
 - $\circ~$ Inner/Outer: 50x100 μm^2
- Temporal resolution:
 - \circ VXD: σ_t = 30ps,
 - Inner/Outer : $\sigma_t = 60$ ps

Tracking at Muon Collider

- Large Beam-Induced-Background (BIB)
- Time information as a crucial component to suppress BIB particles

4D tracking with a quantum algorithm:

QUBO parameters determined by spatial + temporal information of detector hits

- Doublets:
 - $\Delta \phi$: max allowed curvature $\rightarrow \min p_{T}$

- Doublets:
 - $\Delta \phi$: max allowed curvature $\rightarrow \min p_T$
 - $\Delta \theta_{d}$: alignment in r-z plane \rightarrow doublets compatible with primary vertex

"primary vertex compatibility"

- Triplets:
 - \circ **d**₀: transverse impact parameter \rightarrow curvature compatible with primary vertex

• Triplets:

DESY.

- \circ **d**₀: transverse impact parameter
- $\Delta \theta_t$: alignment of triplet hits

- \rightarrow curvature compatible with primary vertex
- \rightarrow scattering

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

Interaction b_{ij}:

• δ(curvature)

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

Interaction b_{ii}:

- δ(curvature)
- Alignment of hits in the r-z plane (scattering)

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

Interaction b_{ii}:

- δ(curvature)
- Alignment of hits in the r-z plane (scattering)
- Time compatibility of hits

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

Interaction b_{ii}:

- δ(curvature)
- Alignment of hits in the r-z plane (scattering)
- Time compatibility of hits

• weighted sum $\rightarrow b_{ij} \in [-1, 0]$

 \rightarrow 4D modeling of triplet interactions

Triplet interactions b_{ii}

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

• Optimise b_{ij} to distinguish interactions from signal and background triplets

Triplet interactions b_{ii}

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

• Optimise b_{ij} to distinguish interactions from signal and background triplets

Triplet interactions b_{ii}

$$\hat{H} = \sum_{i}^{N} \sum_{j < i} b_{ij} T_i T_j$$

- Optimise b_{ij} to distinguish between interactions from signal and background triplets
- Combining position and time information improves the classification by b_{ij}

Reconstruct a single muon track within a large BIB

Setup

- Single muon events overlaid with BIB
- 0.5 GeV < p_T < 5.0 GeV
- 60° < θ < 120°
- Primary vertex (0, 0, 0), $\sigma_7 = 1.5 \text{ mm}$
- Pattern recognition limited to :
 - 1 double layer + 3 single layer (VXD)
 - 1 single layer (inner barrel)

Goal: Reconstruct a single muon track within a large BIB

Results

Data:

• O(30k) triplets after pre-selection

Optimisation

• Matrix diagonalisation, sub-QUBO size = 7

Criteria

• 6 hits required, all from same signal particle

Fake rate

• < 1 fake track per event on average

- A 4D quantum tracking approach using a QUBO formulation was presented
 - \rightarrow QUBO parameters as a combination of spatial and temporal information of detector hits

• Example test application shown for a future high-energy muon collider

• Combining time and position information improves the characterisation of QUBO parameters b_{ij} \rightarrow increased track reconstruction efficiency

Outlook

- Further optimisation of the parameters b_{ii} is needed
 - \rightarrow find optimal b_{ii} = f(spatial, temporal)

- Two options to proceed with the study:
 - Extend search to other tracker regions, maybe even the full tracker
 - \rightarrow computationally costly
 - \circ $\,$ Use found tracks as seed for CKF $\,$
 - \rightarrow proper track finding and fitting throughout the detector

Thank You!

Sub-QUBOs

Source: arxiv:2304.01690

Appendix: QUBO parameter settings

Trivial

• -1 if connection possible

Spatial

- $f(q/p_T): \delta(curvature) \rightarrow \{0, 1\}$
- $max(\Delta \theta_t) \rightarrow [0, 1]$

Temporal

• $max(\Delta t) \rightarrow [0, 1]$

HELMHOLTZ

Appendix: Preselection values

VXD:	Δφ = 0.025 [rad]	Δθ = 0.04 [rad]	d0 = 1 [mm]
ITracker:	Δφ = 0.25 [rad]	Δθ = 0.02 [rad]	d0 = 2 [mm]
OTracker:	Δφ = 0.25 [rad]	Δθ = 0.02 [rad]	d0 = 5 [mm]

HELMHOLTZ

Appendix: χ² of spatial + temporal

