FLASH strategy and FLASH 2020+ project

DESY WA

Markus Gühr for the whole FLASH team

FLASH provides unique opportunities for science

Users at FLASH study electronic processes on femtosecond timescales in many different system

SASE source

5000 bunches/second, up to 1mJ per bunch

1-400 eV photon energy in fundamental

Up to 730 eV in third harmonic

Optical lasers

X-ray split and delay

X-ray diagnosics

FLASH Science

Electronic dynamics in glycine

D. Schwickert, ..., T. Laarmann, Science Advances, 2022

X-ray pump probe study on an aminoacid

Excitation pulse leaves molecule in an electronic superposition

Local probing at C K-edge shows the charge migration and its coupling to nuclear vibrations

FLASH Science

Molecular photoenergy conversion – the electronic molecular movie

Mayer, Lever, Picconi, ...Gühr, Nat. Comm. 13 198, (2022)

- UV absorption in nucleobases conversion to heat
- UV absorption in *thio*nucleobases conversion to destructive triplet states
- FLASH S 2p XPS study shows a *coherent* path towards triplet state
- Electronic movies from XPS serve to understand the molecular photoelectron conversion
- Goal: steering photochemistry by molecular design

FLASH science

Ultrafast Photoinduced Dynamics at interface of water and TiO2

A combined femtosecond time-resolved optical pump--soft X-ray probe photoemission and Ehrenfest molecular dynamics study

FLASH science

Four wave mixing in LiF

H. Rottke, R. Engel. D.Schick ..., M. Beye, S. Eisebitt, Science Advances, 2022

Four wave mixing in LiF using XUV and NIR pulses

Third order susceptibility is high for colocalization of initial and final states

Access to optically dark states at the targetted site

FLASH – XFEL synergies

Starting common activities and give clear guidance to user community

FLASH – XFEL synergies

Fedchenko et al. New. J. Phys. 21, 113031 (2019)

DESY. DESY WA | Markus Gühr | June 15th 2023

Page 9

The evolution of FEL science

Stable source Sensitive methods Smaller datasets

Early 2000s

Pioneer experiments Strong x-ray matter interaction

X-ray only experiments

Experiments highly adapted to the source

Often done by people at the facilities

X-ray expert experiments Linear x-ray interaction for probing out of exuilibrium states

Laser pump – FEL probe

Now

Experiments on model systems

Expert community whith strong bounds to the facilities

The next decade

probe

Topical expert experiments

Linear x-ray interaction for probing out of equilibrium states

Laser pump – FEL probe

Experiments on relevant samples

Goal: we want to reach a wider community that is not involved at the facilities yet and has a low entry barrier to performing the experiment and analyzing the data Page 10

Workshop on Future of science at FLASH

September 25-27, 2017 @ DESY + further topical workshops in the years before

- ~120 participants
- 15 contributed talks
- 6 facility talks
- Poster session
- Breakout sessions on AMO, chemistry and life sciences and condensed matter science

- Keynote speakers:
- Catalysis
- Nonlinear science
- Functional materials
- Imaging
- Astrochemistry
- Magnetism
- AMO

Anders Nilsson Claudio Masciovecchio Hermann Dürr Daniela Rupp Melanie Schnell Jan Lüning Markus Gühr

FLASH2020+ a unique machine in the FEL landscape

FLASH1	FLASH2
Seeded	SASE
Full polarisation control	
Quick and easy tunability	\checkmark
Small bandwidth	Extended wavelength range
Full coherence	(Sub-) femtosecond pulses
Flexible laser based	pump confgurations
Advanced two-co	or FEL schemes

	FLASH1 (Seeded)	FLASH1 (SASE)	FLASH2	
Wavelength range	4 - 60	4 - 60	1.3 - > 60*	nm
Pulse energy	<100	<1000	<1000	μJ
Pulse duration (FWHM)	30	5 - 200	0.1 – 200	fs
Spectral width	Fourier limited	0.5 - 2	0.5-2	%
Pulses per second**	10 - 5000	10 - 5000	10 – 5000	
*including third harmon	ic **Shared between FLAS	SH1 and FLASH2		

FLASH 2020+ Making FLASH brighter, faster and more flexible Conceptual Design Report

CDR in 2020 Based on science workshop Sept. 2017 Deutsches Elektrone Synchroter DEY Aresearch Cetter of the Neumolitiz Association Coutesy: Rolf Treusch

External seeding

Narrower Bandwidth, Stability and Coherence at unique repetition rate

FLASH2020+ upgrade

FLASH: towards a high repetition rate seeded soft X-ray FEL

DESY. DESY WA | Markus Gühr | June 15th 2023

Two important points:

We needed to formulate science challenges for 2020+

We need to strengthen the connection between LK I and LK II

Result: 12 Science Challenges

12 Challenges uniquely benefit from FLASH2020+

Sadia Bari, Martin Beye, Francesca Calegari, Henry Chapman, Benjamin Erk, Ulrike Frühling, Tais Gorkhover, Markus Gühr, Niels Huse, Markus Ilchen, Jochen Küpper, Tim Laarmann, Heshmat Noei, Elke Plönjes-Palm, Nina Rohringer, Kai Rossnagel, Lucas Schaper, Melanie Schnell, Siegfried Schreiber, Lucas Schwob, Holger Sondermann, Andreas Stierle, Simone Techert, Kai Tiedtke, Andrea Trabattoni, Rolf Treusch, Sebastian Trippel, Charlotte Utrecht

The role of electron correlation and coherences in charge-directed reactivity

Molecular ground state reactions Steering molecular dynamics by controlled solvation Understanding molecular photoenergy conversion Plasmonic noble metal nanoparticles in photo-catalysis Optimize efficiency of solar cells Resolving polaron dynamics Control and stabilization of functional phase transitions Understanding biomolecular functionality through its dynamics Understanding life's photoprotection mechanisms Emergence of molecular complexity in space Nature's molecular asymmetry in highly transient matter and processes

FLASH challenge

Stable, narrowband source for XPS

Photocatalysis innovation

- Plasmonic nanoparticles for sensitizing cheap UV photocatalysts
- Needs ultrafast x-rays to identify losses in charge transfer and bond activation

X-ray photoelectron spectroscopy with seeding

- XPS needs high-rep. rate source to avoid space charge broadening
- Statistical pulses from SASE means strong fluctuations on space charge per pulse
- Seeding makes any XPS method much faster

32.2

25

Relative CO2

Concentration /

32.4

 $\lambda(nm)$

Wagstaffe et al., ACS Catal. 10,

538 537 536 535 534

Binding Energy / eV

13650 (2020)

DESY. DESY WA | Markus Gühr | June 15th 2023

rage 18

Courtesy of E.Allaria, Fermi

32.6 10, 13650 (

FLASH challenge

Controlled solvation/photochemistry/biological function

- All these efforts require ion-trapping and mass-spectrometry and ion mobility as novel tools
- Example here: UV induced lesions in biomolecules
- Ion-traps require long trapping and readout times, ideal for FLASH burst mode
- Averaging over whole burst ist required seeded FLASH necessary
- Funding + community building together with FELIX and synchrotrons with a LEAPS workpackage

Dörner...Bari, J. Am. Soc. Mass Spectrom

32, 670 (2021)

DESY. DESY WA | Markus Gühr | June 15th 2023

Project overview

First shutdown was a success!

New electron energy of 1.35 GeV allows pushing short wavelength limit

In FLASH shutdown 21/22 a major part of the linear accelerator was renewed

- 2 out of 7 acerating modules replaced → 100 MeV higher electron energy
- Allows for generation of shorter wavelength FEL radiation (red curve)

Courtesy: Lucas Schaper

First beamtime after shutdown:

Time-resolved experiment with UV excitation and x-ray probe at 330 eV – enabled by the higher electron energy

Sample is a sulfur-substituted nucleobase, with applications in medicine

Extended x-ray energy allows to observe the electronic dynamics of the molecule at different sites - here carbon

FLASH 2020+ Project overview

Major items:

- Seeding infrastructure
- THz chicane
- Photon diagnostics
- New beamline FL11 with new pump-probe laser

FLASH2020+ upgrade cuts

	2019	2020	2021	2022	2023	2024	2025	beyond	
FLASH		• (Shutdown 🔶	*****	Shu	tdown		
FLASH2 Compressor									
FLASH2 PolariX TDS									
Linac Energy Upgrade	Modules - RF - Waveguides - Cryo Preparations								
New Injector Laser	R&D - Prototype Lasers Production Lasers								
FLASH2 Afterburner	R&D - Prototype - Construction								
New BC1 and LH	BC1 con	struction LH	LH Laser						
New BC2	Construction								
New Beamline FL23									
New FL1&FL2 Pump-&Probe-Lasers	R&D - Construction								
Seeded FLASH1	R&D - Prototype - Construction								
THz Source	Construction								
New Beamline FL11	Exp. Endstation								
New Photon Diagnostics FLASH1	R&D - Prototype - Construction								
New Undulator Schemes FLASH2						R&D - Proto	<mark>type - Constru</mark> ct	ion	
New Lasing Concept FLASH2						R&D - Proto	<mark>type - Constru</mark> ct	ion	

Rationale:

- Time: Finish everything inside tunnel before XFEL shutdown in second half of 2025
- Money: Current financial situation does not allow laser, THz, FL11, new photon diagnostics at end of 2025, but allows seeding

Financing Model: major funds come out of the running budget of FLASH in M and FS divisions -

- Crucial: scrutiny and control on operating budgets on M and FS side to finance everything up to seeding
- we must start with undulator purchasing now, there is no way back afterwards

FLASH 2020+ Project overview

We are actively seeking alternative funding

We might need your help with that!

Some operating funds in 26-27 can also be used, assuming we don't use them before for forward funding of seeding

Seeded FLASH1 (reduced)

Courtesy Lucas Schaper

Adaptions required to stick within new funding frame

What had been envisaged in CDR:

- Variable wavelength (60 4 nm)
- 1MHz repetition rate and

 10^{1}

10⁰

10-1

10-2

10⁻³

10-4

Pulse Energy [μJ]

Opportunities

Courtesy Lucas Schaper

Fill the void

What will be realized:

- Fully coherent pulses with
- Variable wavelength (60 4 nm)
- Tens of fs duration
- 1MHz repetition rate and
- Variable polarization

Gaps are possibilities

- Allows for new FEL science via installation of comparably cheap chicanes
 - Additional bunching options, fresh slice techniques, advanced seeding schemes, ...

Stability is key: FLASH 1 will appeal to larger user community & new users

Smoothing electron bunches

Reducing microbunching gain via laser heater

Courtesy Lucas Schaper

A major success: EEHG at FLASH

Worldwide unique: parallel operation of EEHG and SASE

- Initial EEHG setup looking at 12th harmonic took 3 full days!
 - Characterizing 12th harmonic •
- Complete re-setup in only 4 hours
 - Characterizing harmonics 9, 12, 15 and 17
- Successful seeding of 2nd bunch
 - mimicking bunchtrain operation \rightarrow full train to come
- Parallel SASE operation at FLASH2 with 30 bunches above 100uJ at 30 nm
- A major team effort!
 - Expertise vital for future seeded FLASH1
- Continued experiments offer unique chance
 - Shorten commissioning time
 - Develop tools and procedures •
 - Allow early stage science experiments

DESY. DESY WA | Markus Gühr | June 15th 2023

Courtesy Lucas Schaper

Shot number

Thanks for your attention

Thanks to the team at FLASH