Moduli dependent species entropy and species thermodynamics

Niccolò Cribiori

Unterstützt von / Supported by

Alexander von Humboldt

Stiftung/Foundation

(日) (部) (目) (日)

크

Max-Planck-Institut für Physik (Werner-Heisenberg-Institut)

DESY, Hamburg,

8th June 2023

Based on 2212.10286 & 2305.10489 with: D. Lüst, C. Montella, G. Staudt • EFTs are one of the main tools to study physics

• They are not fundamental, rather have certain validity regime

• They are characterized at least by two scales: Λ_{IR} and Λ_{UV}

This talk: I will study Λ_{UV} in EFTs with gravity.

What is Λ_{UV} ? Can we calculate it from first principles?

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

Introduction and motivation

The UV cutoff in gravity

Gravity is strongly coupled at $M_P \sim 10^{18} GeV$.

Ratio of the 1-graviton to the 0-graviton amplitude $\sim (E/M_P)^2$ For $E > M_P$ gravity perturbation theory breaks down.

However, gravity could be strongly coupled already at $\Lambda_{UV} < M_P$.

For example, string theory suggests $\Lambda_{UV} = M_s < M_P$.

Niccolò Cribiori (MPP Munich)

The species scale

String EFTs generically contain a high number N_{sp} of (light) fields/species, e.g. moduli, KK modes, winding, oscillators,

[Veneziano '01; Dvali '07; Dvali, Redi '07; Dvali, Lüst '09] proposed that gravity becomes strongly coupled at

$$\Lambda_{sp} = rac{M_P}{N_{sp}^{rac{1}{d-2}}} < M_P$$

called species scale. It is an upper bound on the UV cutoff

$$\Lambda_{UV} \lesssim \Lambda_{sp} < M_P$$

Note: $N_{sp} \gg 1$ for this effect to be non-trivial. Is there an underlying "statistical" interpretation?

Niccolò Cribiori (MPP Munich)

Arguments for the species scale (1/3)

Perturbative (QFT) [Dvali, Redi '09]

In the worst case, the perturbative expansion breaks down when 1-loop is comparable to tree-level.

The 1-loop graviton propagator coupled to N_{sp} (massless) scalars is proportional to the resummed vacuum polarization $G(p^2)$ such that

$$1/G(p^2) \simeq p^2 \left(1 - N_{sp} \left(\frac{p}{M_P}\right)^{d-2} \log\left(-\frac{p^2}{\mu^2}\right)\right)$$

Tree-level is comparable to 1-loop when

$$p = rac{M_P}{N_{sp}^{rac{1}{d-2}}} \equiv \Lambda_{sp}$$

Niccolò Cribiori (MPP Munich)

Arguments for the species scale (2/3)

Higher-derivatives corrections to GR

The Einstein-Hilbert term is first in a series $\mathcal{O}(\mathbb{R}^n)$. The higher-derivative expansion

$$\mathcal{L} \sim M_P^{d-2}\left(R + \frac{N}{\Lambda^{d-2}}R^2 + \dots\right)$$

breaks down when

$$\Lambda = \frac{M_P}{N^{\frac{1}{d-2}}} \equiv \Lambda_{sp}$$

From this argument, one can also understand that N_{sp} is related to (gravitational) threshold corrections.

[Dixon, Kaplunovsky, Louis '91; Antoniadis, Narain, Taylor '91], recent work [Klaewer, Lee, Weigand, Wiesner '20]

Niccolò Cribiori (MPP Munich)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Arguments for the species scale (3/3)

Non-perturbative (BH)

[Brustein, Dvali, Veneziano '09; Brustein, Medved '10] The size of the smallest possible black hole reliably described by the EFT sets the species scale.

Consider a black hole of Planckian size, leading to

$$\mathcal{S}_{BH} \sim \left(M_P R_{BH}
ight)^{d-2} \sim \left(M_P L_P
ight)^{d-2} \sim 1$$

However, in a theory with N_{sp} particles, the black hole should be able to emit or absorb all of them. Thus, we should rather find

$$\mathcal{S}_{BH} \sim \textit{N}_{sp}$$

This happens if the smallest possible black hole is of size

$$R_{BH} = \Lambda_{sp}^{-1} > L_P.$$

Niccolò Cribiori (MPP Munich)

The species scale $\Lambda_{sp} = M_P / N_{sp}^{\frac{1}{d-2}}$ is a relevant scale in EFTs of quantum gravity. It provides an upper bound on the UV cutoff.

In string theory, N_{sp} should be a function of the moduli

$$N_{sp} = N_{sp}(\phi),$$

for there are no free parameters. To find such a function in general is challenging.

For the specific setup of type II compactifications on CY_3 , [Vafa, Van de Heisteeg, Wiesner, Wu '22] proposed that such function is related to the **genus-one free energy** of the topological string

$$N_{sp} \simeq F_1$$

Niccolò Cribiori (MPP Munich)

イロト 不得 トイラト イラト 一日

Moduli-dependent species scale and BH entropy

[NC, Lüst, Staudt '22]

Moduli-dependent species scale

[Vafa, Van de Heisteeg, Wiesner, Wu '22]

Analogy between 4d N=2 SUGRA with higher-derivatives

$$S_{SUGRA} \supset \int F_1 R \wedge *R + \dots$$

and spontaneously broken 4d CFT

$$\mathcal{S}_{CFT} \supset \int a R \wedge *R + \dots$$

suggests correspondence $a \longleftrightarrow F_1$.

Then, it is somehow natural to postulate

$$N_{sp} \simeq a \simeq F_1,$$

since the central charge counts degrees of freedom.

Niccolò Cribiori (MPP Munich)

Comments and questions

- F₁ given by the topological string is an index. Hence, there could be unwanted cancellations when calculating N_{sp}. Furthermore, it is defined up to an additive constant, since zero modes are regulated away.
- Notice that to identify F₁ with the genus-one free energy of the topological string one needs the results of [Antoniadis, Gava, Narain, Taylor '93], who showed that the topological string is related to the superstring via the graviphoton background.
- Can we arrive at N_{sp} ~ F₁ from black hole arguments? [NC, Lüst, Staudt '22]

Niccolò Cribiori (MPP Munich)

Black holes and attractors

We work within 4d N=2 SUGRA, with a prepotential F = F(X). BH solutions are further specified by a central charge

$$Z = q_{\Lambda} X^{\Lambda} - p^{\Lambda} \partial_{\Lambda} F$$

with $\Lambda = 0, 1, ..., n_V$. X^{Λ} are scalars in vector multiplets, $\partial_{\Lambda} F$ their symplectic duals and q_{Λ}, p^{Λ} electric, magnetic charges.

The attractor mechanism [Ferrara, Kallosh, Strominger '95; Ferrara, Kallosh '96] states that at the horizon

$$p^{\Lambda} = -2 \mathrm{Im} X^{\Lambda}, \qquad q_{\Lambda} = -2 \mathrm{Im} \partial_{\Lambda} F$$

and the entropy is

$$S_{BH} = rac{Area}{4} = \pi Z \bar{Z}$$

Niccolò Cribiori (MPP Munich)

Probing the moduli space with BHs

[Bonnefoy, Ciambelli, Lüst, Lüst, '19] proposed a general method to study moduli spaces via BH solutions of the same compactification.

• At the horizon, moduli are functions of charges, $\phi = \phi(q, p)$. Consider e.g. the volume modulus

$$\mathcal{V} = \mathcal{V}(q, p)$$

Then, we can express $\mathcal{S}_{BH} = \mathcal{S}_{BH}(q,p)$ as

 $S_{BH} = S_{BH}(q, \mathcal{V}),$ or $S_{BH} = S_{BH}(\mathcal{V}, p)$

 Large/small S_{BH} induced by large/small V (or any other modulus) and viceversa. Direct connection to swampland distance conjecture.

Application: Find smallest possible BH by tuning charges. Then, read moduli dependence of the species scale from the entropy.

Niccolò Cribiori (MPP Munich)

Extremal BHs in heterotic on $K3 \times T^2$

Consider extremal dilatonic BHs in heterotic string on $K3 \times T^2$.

The entropy is given by [Ferrara, Kallosh '96]

$$\mathcal{S}_{BH} = \pi Z \bar{Z} = \pi p q$$

The attractor equations fix $g_s^{-2} = \frac{q}{p}$ and thus

$$\mathcal{S}_{BH} = \pi p^2 g_s^{-2}$$

The minimal entropy is reached for p = 1, giving

$$\mathcal{S}_{BH,min}\simeq g_s^{-2}\simeq N_{sp}.$$

It reproduces [Dvali, Lüst '10] for species = string states.

Niccolò Cribiori (MPP Munich)

Extremal BHs in IIA on CY_3 (1/2)

A slightly more involved example is given by IIA on a CY_3 . At large volume, 4d N=2 SUGRA is described by

$$F(X) = \frac{1}{6}C_{ijk}\frac{X^i X^j X^k}{X^0}$$

where

$$z^i = rac{X^i}{X^0}, \qquad i = 1, \dots, h^{11} \equiv n_V$$

are complexified Kähler moduli (actual Kähler moduli: $t^i = \text{Im}z^i$).

BHs can be supported by charges $q, p^i > 0$, giving an entropy

$$\mathcal{S}_{BH} = \pi Z \bar{Z} = 2\pi \sqrt{rac{q}{6}} C_{ijk} p^i p^j p^k$$

Niccolò Cribiori (MPP Munich)

Extremal BHs in IIA on CY_3 (2/2)

The attractor equations fix the CY volume modulus

$$\mathcal{V}_{6} = rac{1}{6} C_{ijk} t^{i} t^{j} t^{k} = \sqrt{rac{q^{3}}{rac{1}{6} C_{ijk} p^{i} p^{j} p^{k}}}$$

and thus

$$\mathcal{S}_{BH} = 2\pi \mathcal{V}_6^{\frac{1}{3}} \left(\frac{1}{6} C_{ijk} p^i p^j p^k\right)^{\frac{2}{3}}$$

The minimal entropy is reached for $\frac{1}{6}C_{ijk}p^ip^jp^k = 1$, giving

$$\mathcal{S}_{BH,min} \simeq \mathcal{V}_6^{rac{1}{3}} \simeq N_{sp}$$

Species = KK modes of decompactification of a 2-cycle [Lee, Lerche, Weigand '19; Fierro Cota, Mininno, Weigand, Wiesner '22]. Smallest possible cycle on a simply connected CY_3 .

Niccolò Cribiori (MPP Munich)

Extremal BHs with R^2 corrections

Certain higher derivative corrections to supergravity are known. For example, we have

$$S_{corr} = rac{1}{96\pi} \int \underbrace{c_{2i}t^{i}}_{F_{1}} R \wedge *R, \qquad c_{2i} = \int c_{2}(CY_{3}) \wedge \omega_{i}$$

from R^4 term in 11D [Antoniadis, Ferrara, Minasian, Narain '97]. It is one-loop and non-renormalized [Green, Gutperle '97].

There exist BPS black hole solutions with this correction. These are MSW black holes [Maldacena, Strominger, Witten '97].

The interaction S_{corr} can be supersymmetrized on a graviphoton background A [Cardoso, de Wit, Mohaupt '98]

$$F = \frac{1}{6}C_{ijk}\frac{X^iX^jX^k}{X^0} + c_{2i}\frac{X^i}{X^0}A \equiv F_0 + F_1A$$

Niccolò Cribiori (MPP Munich)

The modified entropy

In practice, one deals with 4d N=2 SUGRA with (X^{Λ}, A) , $\Lambda = 0, 1, \dots, n_V$. The attractor mechanism works the same [Behrndt, Cardoso, de Wit, Kallosh, Lüst, Mohaupt '96]

$$p^{\Lambda} = -2 \operatorname{Im} X^{\Lambda}, \qquad q_{\Lambda} = -2 \operatorname{Im} \partial_{\Lambda} F(X, A), \qquad A = -64.$$

Entropy is obtained with Wald formula [Wald '91]

$$S_{BH} = 2\pi \int_{S^2} \frac{\delta \mathcal{L}}{\delta R_{\mu\nu\rho\sigma}} \epsilon_{\mu\nu} \epsilon_{\rho\sigma}$$

giving [Cardoso, de Wit, Mohaupt '98]

 $S_{BH} = \pi \left[Z \overline{Z} + 4 \operatorname{Im} \left(A \partial_A F(X, A) \right) \right]$

Model-independent and valid for any F(X, A).

Niccolò Cribiori (MPP Munich)

The species scale and F_1

For black holes in IIA on CY_3 , we find

$$S_{BH} = \sqrt{\frac{q}{6} \left(C_{ijk} p^{i} p^{j} p^{k} + c_{2i} p^{i} \right)} F_{0} F_{1}$$

Entropy receives additive correction due to R^2 term. Minimal entropy is now for $\frac{1}{6}C_{ijk}p^ip^jp^k = 0$ but $c_{2i}p^i \neq 0$, giving

$${\cal S}_{{\cal B}{\cal H},min}\simeq \sqrt{\,{\it q}{\it c}_{2i}{\it p}^{i}}$$

From the solution of the attractor equations, one finds

$$\sqrt{qc_{2i}p^i}\sim c_{2i}t^i\sim F_1$$

and thus we recover [Vafa, Van de Heisteeg, Wiesner, Wu '22]

$$N_{sp} \sim S_{BH,min} \sim F_1$$

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

化白水 化固水 化压水 化压水

Comments

 Our black hole argument employs SUGRA and can only detect large volume limit of F₁

 $F_1 \sim c_{2i}t^i$.

To go beyond, one can use dualities [NC, Lüst to appear].

• A priori, the species scale we calculated in SUGRA is **unrelated** to the topological string and thus to [Vafa, Van de Heisteeg, Wiesner, Wu '22].

Enforcing that the two scales are instead one and the same amounts to impose

$$e^{\mathcal{F}_{BH}} = \mathcal{Z}_{BH} \equiv |\mathcal{Z}_{top}|^2 = e^{\mathcal{F}_{top} + ar{\mathcal{F}}_{top}}$$

This is the conjecture of [Ooguri, Strominger, Vafa '04], here recovered from the species scale.

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

We gave evidence that number of species has to be understood as entropy

$$N_{sp} = S_{sp}$$

Can we take this analogy any further?

Can we define energy and temperature?

Is there a thermodynamical picture behind?

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

Species entropy and thermodynamics

[NC, Lüst, Montella '23]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● ● ●

Black hole thermodynamics

For the seminal work of Bekenstein and Hawking, we know that BHs can be described with the language of thermodynamics.

Consider Schwarzschild BH with radius R_{BH} . We have $(M_P = 1)$

$$M_{BH} = (R_{BH})^{d-3}$$
$$T_{BH} = (R_{BH})^{-1}$$
$$S_{BH} = (R_{BH})^{d-2}$$

from which

$$\mathcal{S}_{BH} T_{BH}^{d-2} = 1$$

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

Temperature of species

From the previous relation $S_{BH}T_{BH}^{d-2} = 1$, since $S_{BH} \simeq N_{sp}$ it is natural to identify the **species temperature**

$$T_{sp} = rac{1}{\mathcal{S}_{sp}^{rac{1}{d-2}}} \equiv \Lambda_{sp}$$

- It is the temperature of a Schwarzschild BH with entropy $S_{sp} = N_{sp}$.
- It can be derived by tuning charges of non-extremal BHs in N=2 SUGRA, as those discussed in [NC, Dierigl, Gnecchi, Lüst, Scalisi '22].
- In a sense, it is a temperature of the moduli space of the EFT.

Niccolò Cribiori (MPP Munich)

Energy of species

To find E_{sp} , let us proceed with a concrete example.

Consider a tower of N_{sp} species with step $\Delta E = \Lambda_{sp}/N_{sp}$. The level k has energy $E_k = k\Delta E$ and the total energy of the tower is

$$E_{sp} = \sum_{k=1}^{N_{sp}} E_k \simeq \Lambda_{sp}^{3-d} = (\mathcal{S}_{sp})^{rac{d-3}{d-2}}$$

- Similarly for a tower of string states, see [NC, Lüst, Montella '23]
- E_{sp} is the mass of a Schwarzschild BH with entropy $S_{sp} = N_{sp}$
- T_{sp} , E_{sp} and S_{sp} obey the thermodynamic relation

$$\frac{1}{T} = \frac{\partial S}{\partial E}$$

This is a non-trivial consistency check

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

- Given a tower of species, we identified its entropy, temperature and energy
- They obey standard thermodynamic relations
- We can formulate laws of species thermodynamics
- They allow for a thermodynamical analysis of the moduli space

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

The laws of species thermodynamics

Zero-th law

If two points in the moduli space have the same $\Lambda_{sp}(\phi)$, then they have the same $T_{sp}(\phi)$.

First law

Two neighboring stationary species towers are related by

$$\delta E_{sp} = T_{sp} \delta S_{sp} + \dots$$

Second law

The species entropy does not increase when moving adiabatically towards the boundary of the moduli space

$$\delta \Lambda_{sp}(\phi) \leq 0, \qquad \delta \mathcal{S}_{sp}(\phi) \geq 0$$

• Third law

It is impossible to reach the point $T_{sp} = 0$ with a finite sequence of steps.

Niccolò Cribiori (MPP Munich)

▲□▶▲□▶▲∃▶▲∃▶ ∃ のの⊙

Comments

• The 2nd law singles out a preferred direction over the moduli space, along which the number of species cannot decrease

$$\delta N_{sp} \ge 0$$

For KK towers, this is towards large volume $\delta \mathcal{V} \ge 0$, while for string towers it is towards weak coupling $\delta g_s \le 0$. Expected from **swampland conjectures** [Lee, Lerche, Weigand '19].

- The point $T_{sp} = 0$ is at infinite distance in the moduli space.
- If two towers of species coalesce, the final species scale is always less then the minimum of the initial ones

$$\Lambda_{sp_1+sp_2} \leq \min(\Lambda_{sp_1}, \Lambda_{sp_2})$$

Niccolò Cribiori (MPP Munich)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Conclusions

- EFTs of gravity with N_{sp} species are valid at most at $\Lambda_{sp} = M_P/N_{sp}^{rac{1}{d-2}}$
- In string theory, $N_{sp} = N_{sp}(\phi)$ and it has been proposed that this is related to the topological string free energy [Vafa, Van de Heisteeg, Wiesner, Wu '22]
- The proposal can be checked directly by studying black holes [NC, Lüst, Staudt '22]
- This strongly suggests that N_{sp} is an entropy
- One can formulate laws of species thermodynamics [NC, Lüst, Montella '23]

Niccolò Cribiori (MPP Munich)

Future directions

• Understand moduli dependence of species scale with less than 8 supercharges, perhaps using [Martucci, Risso, Weigand '22]

• Understand better the role of the topological string and of the OSV conjecture

• Formulate species thermodynamics of Reissner-Nordstrom BHs

• How to interprete *Q*, pressure, ...?

Thank you!

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

イロト イヨト イヨト イヨト

Extra slides

Niccolò Cribiori (MPP Munich)

Moduli dependent species entropy and species thermodynamics

A shortcut

One can arrive at the same result by using special geometry with coordinates (X^{Λ}, A) to rewrite the entropy as

$$\mathcal{S}_{BH} = \pi \left[e^{-K} + rac{1}{6} c_{2i} \mathrm{Im} rac{X^i}{X^0}
ight]$$

Then, one can check that for the minimal charge configuration described above the two terms compete

$$e^{-K}\sim rac{1}{6}c_{2i}{
m Im}rac{X^i}{X^0}\sim F_1$$

and thus

$$\mathcal{S}_{\mathcal{BH}} = \pi \left[e^{-\mathcal{K}} + rac{1}{6} c_{2i} \mathrm{Im} rac{X^i}{X^0}
ight] \gtrsim \mathcal{F}_1 \simeq \mathcal{S}_{\mathcal{BH}, \mathit{min}}$$

Niccolò Cribiori (MPP Munich)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの