Mechanical Structure of ECAL-P

status report & update

Grzegorz Grzelak, Piotr Zbińkowski, Filip Żarnecki

University of Warsaw

LUXE ECAL weekly meeting, 16-MAY-2023

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023

Update since LUXE meeting in Tel-Aviv (6-MAR-2023)

- Decisions/agreements made in Tel-Aviv:
 - separate "base-plate" for ECAL-P and Tracker (better tension distribution, easier transportation and positioning, more design freedom for each team, etc...)
 - ullet closer distance between ECAL-P and Tracker (\sim 6 cm), non-central location on 6DOF table
 - ECAL-P can use only 50% of space above the beam-pipe
 - independent support for tungsten shielding around the beam-pipe (1mm gap to ECAL-P)
 - no rotary table in LUXE experimental hall (some simpler solution for test beam setup, not today...)
- New development:
 - Modified support (upper combs) for PCBs+sensors
 - Modified fixture for lowering/lifting of PCBs+sensors (in progress...)
 - ullet Aluminum T-frame for holding PCBs (feedback from Kraków, o zoom tomorrow)
 - new "funnels" to guide sensors inside ECAL-P gaps (in progress, not today...)
 - location and mounting of bases/nests for geodesy markers (ball mounted retroreflectors)
 - first proposal of "spider" for transportaion/crane
 - new mechanism for manipulating/positioning and fixing ECAL-P on the 6DOF "DESY standard" table (in progress...)
 - support for cabling (feedback from Kraków, not today...)

ECAL-P location, CAD view of interaction area (not much up to date...)

- on the "positron-arm" closer to the wall of the experimental hall (\sim 80 cm) space left to the wall...
- ECAL-P and Tracker on a separate tables (base-plates) (separate pillars ?)
- ullet behind shielding tungsten plates (\sim 1000 mm length)

ECAL-P: mechanical parameters

ECAL-P: mechanical parameters

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 4 /

ECAL-P main frame

- main aluminum body of ECAL-P with 3.5 or 7 mm tungsten plates (1 mm gaps)
- ullet current version: 15 layers (10 imes 1 X_0 + 5 imes 2 X_0), keeping **flexible "open architecture"**
- ullet transverse size of single plane: 90 imes 540 mm² 6 CALICE (320 μ m) silicon sensors per plane

ECAL-P main frame

- interior with combs and ribs for positioning the plates (in the bottom and side-walls)
- 10 mm distance between Si sensors and the shielding (asymmetric beam-pipe side)
- "funnels" to facilitate the insertion of tungsten plates and to protect the combs

PCBs support: area above the beam-pipe

PCBs support: area above the beam-pipe

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 7 /

ECAL-P OLD PCB support: dimensions

- OLD: outer X-dimension: outside beam-pipe axis on ECAL-E territory
- possible conflict with electron side (e-tracker, ECAL-E ?)

ECAL-P NEW PCB support: distance to beam-pipe axis

- NEW: PCB support occupying only 50% space above the beam-pipe
- major redesign necessary (work in progress...), new PCB support, new lowering mechanism

ECAL-P NEW PCB support, OLD lowering mechanism

- OLD lowering mechanism:
 clash with NEW narrower PCB support
- redesign in progress...
- (lowering mechanism used only during assembly or repair, not in "working position")

OLD fixture for lowering the sensors and OLD PCB support

ullet Structure of PCBs (thickness: 1 \div 1.5 mm + chips/connectors), kapton foil and Silicon sensors

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023

OLD fixture for lowering the sensors and OLD PCB support

- OLD: 2 degrees of freedom: up-down (Y) and forward-backward (Z), gentle lowering, "slow motion"
- NEW: simpler mechanism under development (only up-down (Y) motion).

T-frames for PCBs

T-frames for PCBs

NEW T-frame for holding PCBs

- PCBs will be not monolithic, composed of 2 or 3 pieces → not self-supporting
- requires extra mechanical structure : T-frame made of 3 mm Alu plates (\sim 550 mm) long (!) (plus extra machining for fine substructure), for each ECAL-P frame (new non trivial element !)

NEW T-frame for holding PCBs

- substructure of holding/fixing PCBs inside the T-frame (work in progress... double sided PCBs ?)
- leveling on main body of ECAL-P or on the combs of upper PCB support ?

NEW T-frame for holding PCBs (zoom)

- leveling on main body of ECAL-P or on the combs of upper PCB support ?
- $\bullet \ \, (\text{not on tungsten absorber palates} \rightarrow \text{unknown precision of machining}) \\$

NEW T-frame for holding PCBs

• view with PCB inside (temporary prototype)

Markers for geodesy survey

Markers for geodesy survey

ECAL-P: location of markers for geodesy survey

- 4 markers on metal bars, not on common plane (better constrains of DOF), exact heights TBD
- (marker closest to the beam-pipe has the lowest possible position above beam-pipe \sim 20 cm)
- attached directly to the ECAL-P main frame
- not in conflict with other components (easy to remove)
- looking "upwards" better reproducibility of position
- waiting for feedback from Louise and Karsten
 - \rightarrow field of view of laser tracker ?

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 19 /

ECAL-P: location of markers for geodesy survey

- 4 markers on metal bars, not on common plane (better constrains of DOF), exact heights TBD
- \bullet (marker closest to the beam-pipe has the lowest possible position above beam-pipe \sim 20 cm)
- attached directly to the ECAL-P main frame
- not in conflict with other components (easy to remove)
- looking "upwards" better reproducibility of position
- waiting for feedback from Louise and Karsten
 - \rightarrow field of view of laser tracker ?

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 20 /

ECAL-P: marker nest for geodesy survey

Nest parameters

- standard "Messmarkenbasis_12.2.1_Boden"
- nest: 30 mm diameter
- M12 thread & screw
- $\bullet \ \ neodymium \ magnet \oslash \ 18 \times 5 \ mm \\$

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 21/2

The Spider

The Spider

ECAL-P: "Spider" for transportation/crane

• rigid self-supporting structure

- attached to the ECAL-P base-plate wit 4 screws
- hooks not on the level of base-plate
- $\hbox{ upper part will be still modified} \\ \hbox{ (double-"T" shaped angle bars)} \rightarrow \hbox{no welding !}$
- possible cover/housing (wooden or plastic side walls) for protection during long distance transport

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 23 / 3

positioning on the 6DOF table

positioning on the 6DOF table

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 24

ECAL-P: positioning on the 6DOF table

- ullet 6DOF table has only ± 0.5 cm range
- degrees of freedom are not independent (tedious iterative procedure...)
- 6DOF table adequate for leveling with beam-pipe and tracker
- but not for moving between working and parking position (few cm in X direction)
- crane not precise enough to define the final position with 1 mm distance to the shielding
- \bullet ECAL-P will be to heavy (\sim 80 kg) to adjust it manually...

G. Grzelak (UW) ECAL-LUXE 16-MAY-2023 25 / 27

ECAL-P: positioning on the 6DOF table

• new mechanism under design (using M12 holes for spider)... moving and docking in final position (to 1 mm gap to the shielding)

LUXE experimental area: 10 t crane in the cavern

