- check sensitivity to different PDFs (xfitter-process): DONE
- plot partial derivatives weighted by stat. unc.
- check chi2 for different PDF sets using pseudodata produced with another PDF set
- somehow check sensitivity in different bins (by using different parameters in different bins?)

PDF rotation (ABMP16)

Used instructions at

https://gitlab.cern.ch/fitters/xfitter/-/wikis/PDF%20rotation

- New 'feature' of xfitter-draw: no axis labels... (ROOT Version: 6.28/04)
- Largest impact on $2/3u_v + 1/3d_v$
- Ist eigenvector almost fully determines PDF error band:

ABMP16_5_nnlo	mem1	mem2	mem3	mem4	mem29
χ^2 /dof	878/120	81/120	46/120	4/120	0/120

Consistent with results from arXiv:1907.07727

PDF rotation (from arXiv:1907.07727)

Figure 6. Contribution of the first four and last rotated eigenvectors to the uncertainty error bands of the normalised distribution of the ratios of (left to right) *u*-valence, *d*-valence and ((2/3)u+(1/3)d)valence of the CT14mlo (top row) and HERAPDF2.0mlo (bottom row) PDF sets. The eigenvectors are rotated and sorted according to their sensitivity to $A_{\rm FB}^*$ pseudodata corresponding to an integrated luminosity of 300 fb⁻¹.

CT14nnlo	mem1	mem2	mem3	mem4	mem56
Total χ^2 /d.o.f.	164/106	169/106	10/106	14/106	0.98/106
HERAPDF2.0nnlo	mem1	mem2	mem3	mem4	mem28
Total χ^2 /d.o.f.	4.8/106	8.0/106	0.48/106	0.74/106	0.01/106

Table 1. The χ^2 table for the CT14nnlo and HERAPDF2.0nnlo sets with rotated eigenvectors.

BACKUP

Missing higher order uncertainties

- This sensitivity study is done at LO
- From arXiv:1907.0772 we have NLO grids [MCFM]
- They are affected by limited statistics, however the effect of NLO scale variations is rather smooth (it was further smoothed as function of *M* for the paper)
- Binning: 0 < y < 2.5 (5 bins), 45 < M < 145 GeV (40 bins), but in arXiv:1907.0772 we looked only at *M* bins

NLO scale variations

NLO scale variations are generally smaller than stat. unc. of pseudodata

A. Anataichuk, S. Zenaiev

Update on SMEFT AFB

NLO scale variations

• For the future real analysis at NNLO one expects even smaller effect

A. Anataichuk, S. Zenaiev

Update on SMEFT AFB