Exploring Z couplings constraints using AFB and xFitter. Update and General overview

> Andrii Anataichuk Oleksandr Zenaiev

Project motivation

• Improve current constraints on coupling constant of u and d quarks from arXiv:2103.12074 using AFB as a observable variable in DY NC production

Coupling constant for u and d $g_R^{Zu}, g_L^{Zu}, g_R^{Zd}, g_L^{Zd}$

Why AFB?

Answer: Due to cancellations of various QCD and PDF uncertainties

General plan of our work

- 1. Setup and upgrade xFitter
- 2. Study non-SM constraints using ATLAS data following arXiv:2103.12074v1 (internal cross-check, not for the paper?)
- 3. Create different pseudodata sets including statistical and theoretical error
- 4. Exploring different number of bins for rapidity and invariant mass
- 5. Various cross-checks connected with PDFs
- 6. Study of derivatives of AFB

- New results

Setup and upgrade xFitter

• Setup xFitter

- Added rapidity (y_min, y_max) as changing parameters
- Added variational values (deltas) with naming as it was in arXiv:2103.1207 (left, right u, and d quarks)
- Some additional code so that it works appropriately
- Variate them as parameters in parameters.yaml

```
1653
     // Z-boson couplings
1654
      Z Vu = (1.0/2.0)*qsm param*(1.0/6.0)*(3*cos(smangle param)+8*sin(smangle param));
      Z Au = (1.0/2.0)*gsm param*(cos(smangle param)/2.0);
      Z_Vd = (1.0/2.0)*gsm_param*(1.0/6.0)*(-3*cos(smangle_param)-4*sin(smangle param));
1656
      Z Ad = (1.0/2.0)*gsm_param*(-cos(smangle_param)/2.0);
1657
      Z_Vl = (1.0/2.0)*gsm_param*((-cos(smangle_param)/2.0)+(-2*sin(smangle_param)));
1658
      Z_Al = (1.0/2.0)*gsm_param*(-cos(smangle_param)/2.0);
1659
1660
1661
      // non-SM variation constants
      double delta Z Ru = 0, delta Z Lu = 0, delta Z Rd = 0, delta Z Ld = 0;
1662
1663
     if (td->hasParam("delta Z Ru")) {
1664
        delta Z Ru = *td->getParamD("delta Z Ru");
1666
1668
      if (td->hasParam("delta Z Lu")) {
1669
        delta Z Lu = *td->getParamD("delta Z Lu");
1670
1672
      if (td->hasParam("delta Z Rd")) {
        delta Z Rd = *td->getParamD("delta_Z_Rd");
1674
      3
1675
1676
      if (td->hasParam("delta Z Ld")) {
        delta_Z_Ld = *td->getParamD("delta Z Ld");
1678
     3
1679
1680
      double Z_Ru = 1.0/2.0*(Z_Vu + Z_Au) + delta_Z_Ru;
      double Z Lu = 1.0/2.0*(Z Vu - Z Au) + delta Z Lu;
1681
      double Z_Rd = 1.0/2.0*(Z_Vd + Z_Ad) + delta_Z_Rd;
1682
      double Z Ld = 1.0/2.0*(Z Vd - Z Ad) + delta Z Ld;
1683
1685
     Z V u = Z R u + Z L u;
      Z A u = Z R u - Z L u;
      Z Vd = Z Rd + Z Ld;
      Z Ad = Z Rd - Z Ld;
1688
1689
```

Reaction AFB.cc

More details of changes <u>https://gitlab.com/fitters/xfitter/-/merge_requests/7</u> <u>https://gitlab.cern.ch/fitters/xfitter/-/merge_requests/317</u>

Results for 4 bins from arXiv:2103.12074

• Big correlation

• Very big values

energy: 8000.0
eta_cut: 999.0
pT_cut: 0.0
y_min: 0.0
y_max: 0.0

FCN=	17.59691	FROM HESSE	STATUS=0K		23 CALLS	429 TOTAL
		EDM= 0.21E-0	04 STRATEGY	Y= 2	ERROR MATRIX	ACCURATE
EXT	PARAMETER			INTERNAL	INTERNAL	_
NO.	NAME	VALUE	ERROR	STEP SIZE	VALUE	
1	delta Z Ld	-0.30795E-01	7.6980	0.32713E-	02 -0.307958	E-01
2	delta_Z_Lu	-10.429	24.640	0.80158E-	04 -10.429	
3	delta_Z_Rd	-17.216	40.912	0.94750E-	03 -17.216	
4	delta_Z_Ru	17.399	41.141	0.15163E-	03 17.399	
PARA	METER CORREL	ATION COEFFICIE	NTS			
	NO. GLOBAL	. 1 2	3 4			
	1 0.00197	1.000-0.000-0	.000 0.000			
	2 0.99997	-0.000 1.000 0	.995-1.000			
	3 0.99849	-0.000 0.995 1	.000-0.994			
	4 0.99996	0.000-1.000-0	.994 1.000			

With restrictions for deltas between -1 to 1

78	FCN=	17.64500	FROM HESSE	STATUS=	ОК	23	CALLS	711 TOTAL		
79			EDM= 0.15	E-02 STRA	TEGY= 2	ERR	OR MATRIX	ACCURATE		
80										
81	EXT	PARAMETER			INTERNA	L	INTERNAL	-		
82	NO.	NAME	VALUE	ERROR	STEP SI	ZE	VALUE			
83	1	delta_Z_Ld	-0.28990E-01	0.34483	0.78124	E-03	-0.28994	E-01		
84	2	delta_Z_Lu	-0.48142	0.31306	0.24371	E-04	-0.50227			
85	3	delta_Z_Rd	-0.78536	0.48827	0.38807	E-03	-0.90328			
86	4	delta_Z_Ru	0.78902	0.46971	0.65107	E-04	0.90921			
PA	PARAMETER CORRELATION COEFFICIENTS									
	N	D. GLOBAL	1 2 3	3 4						
	1	1 0.05230 1	L.000-0.002-0.00	06 0.004						

2 0.99949 -0.002 1.000 0.936-0.998 3 0.97827 -0.006 0.936 1.000-0.916

4 0.99934 0.004-0.998-0.916 1.000

Extend for 10 bins from ATLAS-CONF-2018-037

	70 <	$< m^{\ell\ell} < 80$	GeV		$80 < m^{\ell\ell}$	< 100 GeV	$100 < m^{\ell\ell} < 125 \text{ GeV}$				
y ^{ℓℓ}	0-0.8	0.8 – 1.6	1.6 - 2.5	0-0.8	0.8 – 1.6	1.6 - 2.5	2.5 - 3.6	0-0.8	0.8 – 1.6	1.6 - 2.5	
Central value	-0.0681	-0.2684	-0.5087	0.0195	0.0448	0.0923	0.1445	0.0975	0.3311	0.6722	
		Uncertainties			Uncert	tainties			Uncertainties		
Total	0.0176	0.0199	0.0391	0.0015	0.0016	0.0026	0.0046	0.0086	0.0099	0.0234	
 Big, but 1 than for 4 Reasonab 	ower con 4 bins ble χ^2	relation	83 FCN= 84 85 86 EXT 87 NO. 88 1 89 2 90 3	22.53033 PARAMETER NAME delta_Z_Ld delta_Z_Lu delta_Z_Rd	FROM HE EDM= (VALUE -0.40386E -0.20242E -0.14089E	ESSE ST/ 0.14E-04 ERR(-01 0.400) -02 0.2194 -01 0.2319	ATUS=OK STRATEGY= IN DR ST 33E-01 0.4 48E-01 0.4 98E-01 0.4	2 2 ER TERNAL EP SIZE 48077E-05 89360E-06 20266E-05	3 CALLS ROR MATRIX INTERNAL VALUE -0.40386E -0.20242E -0.14089E	278 TOTAL ACCURATE -01 -02 -01	
energy: 80 eta_cut: 9 pT_cut: 0. y_min: 0.0 y_max: 0.0	00.0 99.0 0		91 4 92 93 EXTER 94 0.16 95 -0.31 96 -0.72 97 0.16 98 99 PARAM 00 .00 .01 .02 .03	delta_Z_Ru NAL ERROR M 0E-02-0.318 8E-03 0.482 3E-03 0.428 9E-03-0.803 NETER CORRE NO. GLOBA 1 0.9684 2 0.9963 3 0.9828	-0.11526E MATRIX. BE-03-0.723E EE-03 0.428E BE-03 0.538E BE-03-0.598E ELATION COEF AL 1 ELATION COEF AL 1 5 1.000-0.361 1. 30 -0.361 1.	-01 0.380 NDIM= 50 E-03 0.169E E-03-0.803E E-03 0.145E FFICIENTS 2 3 .361-0.779 (.000 0.840-(.840 1.000-(38E-01 0. NPAR= 4 -03 -03 -03 -02 4 0.111 0.962 0.678	17800E-05 ERR DE	-0.11526E F= 1.00	-01	

Confidence ellipses for obtained data

Allowed regions (at 95% CL) for four corrections of the Z couplings.

10

How we generate pseudodata

PARAMETER

NAME delta Z Ld

Range for rapidity: 0 - 3.69 bins with step 0.4

Range for invariant mass: 70 - 125 GeV 11 bins with step 5 GeV

Luminosity (*L*) $- 3000 \ fb^{-1}$

Detector acceptance $(\varepsilon) - 0.2$

to find stat error

delta Z Lu 0.12485E-05 0.80108E-03 delta Z Rd 0.60258E-06 0.39503E-03 delta Z Ru 0.82996E-06 0.63236E-03 CORRELATION COEFFICIENTS PARAMETER GLOBAL 1.000 0.972 0.848 0.691 0.99491 0.972 1.000 0.777 0.528 0.99362 0.848 0.777 1.000 0.830 92731 0.691 0.528 0.830 1.000 0.95717

VALUE

0.51111E-05

Smaller correlation than in previous pseudodata

In our case $N_{min} \approx 12000$ $\Delta A_{\rm FB}^* = \sqrt{\frac{1 - A_{\rm FB}^*^2}{N}},$ $N = L\varepsilon(F + B)$ Used formula from arXiv:1907.07727

ERROR

0.31596E-02

energy : 13000.0 eta cut: 5.0 pT_cut : 20.0 **y_min** : 0.0 v max : 0.0

 A_{FB}^* - value of forward-backward asymmetry, N – number of events, F and B-forward and backward cross-sections, respectively

Derivatives from AFB divided by Δ_{stat} as function of M_{inv}

Introduction of characteristic parameter

Binning with respect to rapidity |Y|

Pseudodata for different binning

 M_{inv} range: 45-145 GeV

Error and correlation of the couplings weakly depend from PDF sets

Comparison of different PDFs with Volumes

The ratio between average error radii of order $1 \div 1.5$

Comparison of Hesse vs exact variation on $\chi^2 = 1$

Hesse method shows good results compared to the exact calculation by MNContour

ABMP16 CL=95%

PDF rotation (ABMP16)

Used instructions at

https://gitlab.cern.ch/fitters/xfitter/-/wikis/PDF%20rotation

- New 'feature' of xfitter-draw: no axis labels... (ROOT Version: 6.28/04)
- Largest impact on $2/3u_v + 1/3d_v$
- Ist eigenvector almost fully determines PDF error band:

ABMP16_5_nnlo	mem1	mem2	mem3	mem4	mem29
χ^2 /dof	878/120	81/120	46/120	4/120	0/120

Consistent with results from arXiv:1907.07727

NLO scale variations

• NLO scale variations are generally smaller than stat. unc. of pseudodata

NLO scale variations

• For the future real analysis at NNLO one expects even smaller effect

150

M(II)

Running pseudodata with different PDF set

HERAPDF20 pseudodata with ABMP16 (without changes)

FCN=	488.4394	FROM CALl f EDM= unknow	cn STATUS=RESI	ET Y= 1	1 CALLS NO ERROR MATRIX	1 TOTAL
EXT	PARAMETER	CU	RRENT GUESS	PHYSIC	AL LIMITS	
NO.	NAME	VALUE	ERROR	NEGATIVE	POSITIVE	
1	delta_Z_Ld	0.0000	0.10000			
2	delta_Z_Lu	0.0000	0.10000			
3	delta_Z_Rd	0.0000	0.10000			
4	delta_Z_Ru	0.0000	0.10000			

HERAPDF20 pseudodata with ABMP16 (with migrad)

FCN=	160.0691	FROM HESSE	STATUS=0K	23	CALLS	199 TOTA
		EDM= 0.95E	-05 STRATEC	GY= 2 ERR	OR MATRIX AC	CURATE
EXT	PARAMETER			INTERNAL	INTERNAL	
NO.	NAME	VALUE	ERROR	STEP SIZE	VALUE	
1	delta_Z_Ld	-0.91099E-02	0.60507E-02	0.17974E-05	-0.91099E-0	2
2	delta_Z_Lu	0.32083E-02	0.10986E-02	0.33138E-06	0.32083E-0	2
3	delta_Z_Rd	0.75984E-02	0.17967E-02	0.10264E-05	0.75984E-0	2
4	delta_Z_Ru	0.68725E-02	0.14078E-02	0.16726E-06	0.68725E-0	2

HERAPDF20 pseudodata with CT18 (without changes)

HERAPDF20 pseudodata with CT18 (with migrad)

FCN= 68.08138	FROM CAL EDM= unk	l fcn STATUS=RE nown STRATE	SET GY= 1 N	1 CALLS O ERROR MATRIX	1 TOTAL	FCN=	49.39074	FROM HESSE EDM= 0.22E	STATUS=OK E-05 STRATE	23 GY= 2 ERF	3 CALLS ROR MATRIX AC	158 TOTAL CCURATE
EXT PARAMETER NO. NAME 1 delta_Z_Ld 2 delta_Z_Lu 3 delta_Z_Rd 4 delta_Z_Ru	VALUE 0.0000 0.0000 0.0000 0.0000	CURRENT GUESS ERROR 0.10000 0.10000 0.10000 0.10000	PHYSICAL NEGATIVE	LIMITS POSITIVE		EXT NO. 1 2 3 4	PARAMETER NAME delta_Z_Ld delta_Z_Lu delta_Z_Rd delta_Z_Ru	VALUE 0.22992E-03 0.30494E-02 0.15203E-02 0.84693E-03	ERROR 0.77036E-02 0.19154E-02 0.31728E-02 0.18881E-02	INTERNAL STEP SIZE 0.19912E-05 0.48711E-06 0.12172E-05 0.77681E-06	INTERNAL VALUE 0.22992E-0 0.30494E-0 0.15203E-0 0.84693E-0	03 02 02 03

HERAPDF20 pseudodata with MSHT20 (without changes) HERAPDF20 pseudodata with MSHT20 (with migrad)

FCN= 249.3247	FROM CA EDM= un	Ll fcn STATUS=RE known STRATE	SET GY= 1 NO	1 CALLS ERROR MATRIX	1 TOTAL	FCN=	116.6972	FROM HESSE EDM= 0.35E	STATUS=OK E-05 STRATE	GY= 2 EF	23 CALLS ROR MATRIX A	143 TOTAL CCURATE
EXT PARAMETER		CURRENT GUESS	PHYSICAL	LIMITS		EXT	PARAMETER			INTERNAL	INTERNAL	
NO. NAME	VALUE	ERROR	NEGATIVE	POSITIVE		NO.	NAME	VALUE	ERROR	STEP SIZE	VALUE	
1 delta_Z_Ld	0.0000	0.10000				1	delta_Z_Ld	-0.79985E-03	0.51763E-02	0.17101E-05	-0.79985E-	03
2 delta_Z_Lu	0.0000	0.10000				2	delta_Z_Lu	0.30990E-02	0.13516E-02	0.45327E-00	0.30990E-	02
3 delta Z Rd	0.0000	0.10000				3	delta_Z_Rd	0.13714E-01	0.21454E-02	0.12603E-05	0.13714E-	01
4 delta_Z_Ru	0.0000	0.10000				4	delta_Z_Ru	0.61700E-02	0.16086E-02	0.97247E-00	0.61700E-	02

Running pseudodata with different PDF set

HERAPDF20 pseudodata with NNPDF40 (without changes)	HERAPDF20 pseudodata with NNPDF40 (with m <mark>igrad)</mark>					
FCN= 321.3273 FROM CALL fcn STATUS=RESET 1 CALLS 1 TOTAL EDM= unknown STRATEGY= 1 NO ERROR MATRIX	FCN=95.84044FROM HESSESTATUS=OK23 CALLS161 TOTALEDM=0.66E-07STRATEGY=ERROR MATRIX ACCURATE					
EXT PARAMETER CURRENT GUESS PHYSICAL LIMITS NO. NAME VALUE ERROR NEGATIVE POSITIVE 1 delta_Z_Ld 0.0000 0.10000 2 delta_Z_Lu 0.0000 0.10000 2 delta_Z_Rd 0.0000 0.10000 4 delta_Z_Ru 0.0000 0.10000	EXT PARAMETER INTERNAL INTERNAL NO. NAME VALUE ERROR STEP SIZE VALUE 1 delta_Z_Ld 0.52608E-02 0.46604E-02 0.11651E-05 0.52608E-02 2 delta_Z_Lu 0.52660E-02 0.14354E-02 0.38197E-06 0.52660E-02 3 delta_Z_Rd 0.13051E-01 0.19941E-02 0.62582E-06 0.13051E-01 4 delta_Z_Ru 0.69733E-02 0.14626E-02 0.51016E-06 0.69733E-02					
Recheck MSHT20 pseudodata with CT18 (without changes) MSHT20 pseudodata with CT18 (with migrad)						
FCN=19.18510FROM CALL fcn EDM= unknownSTATUS=RESET STRATEGY=1 CALLS NO ERROR MATRIX1 TOTALEXT PARAMETER NO.CURRENT GUESSPHYSICAL LIMITS PHYSICAL LIMITS11TOTALIdelta_Z_Ld0.00000.100000.100000.10000112delta_Z_Rd0.00000.100000.10000110103delta_Z_RU0.00000.100000.100001100100	FCN= 17.20874 FROM HESSE EDM= STATUS=OK STRATEGY= 23 CALLS ERROR MATRIX ACCURATE EXT PARAMETER INTERNAL INTERNAL INTERNAL NO. NAME VALUE ERROR STEP SIZE VALUE 1 delta_Z_Ld 0.16140E-01 0.12477E-01 0.85399E-06 0.16140E-01 2 delta_Z_Lu 0.48249E-02 0.40409E-02 0.26004E-06 0.48249E-02 3 delta_Z_Rd 0.50120E-02 0.40857E-02 0.57853E-06 0.50120E-02 4 delta_Z_Ru 0.13753E-02 0.22262E-02 0.35630E-06 0.13753E-02					

The central values don't match for different PDF sets and their pseudodata

Our pseudodata comparing to current constrains

Conclusion!

- Upgrade of xFitter was done
- Constraints on Z couplings using experimental data from ATLAS-CONF-2018-037 were studied
- Different types of pseudodata were generated and explored
- The dependence of constraints from the number of bins for rapidity and invariant mass was obtained
- Comparing different PDF sets using pseudodata was done
- AFB derivatives was studied
- The possibility of significantly constraining Z couplings using HL-LHC data
- The result is ready to be published

<u>Appendix A</u> Comparison of pseudodata

Intermediate result!

Allowed regions (at 95% CL) for four corrections of the Z couplings.

Intermediate conclusion

- Current constraints for couplings can be significantly improved with high luminosity data
- Also even current data for 10 bins can additionally constrain deltas
- Found interesting effect with rapidity bins

	$\Delta \delta_{Ru}$	$\Delta \delta_{Lu}$	$\Delta \delta_{Rd}$	$\Delta \delta_{Ld}$
4 bins from [4]	0.031	0.023	0.130	0.036
10 bins from [8]	0.048806	0.027921	0.038547	0.034358
Pseudodata 11x9	0.002563	0.002720	0.002801	0.012219
Pseudodata 44x5	0.006390	0.012492	0.008579	0.039614