First look at pysics analysis at HALFH

Mikael Berggren¹

¹DESY, Hamburg

FC@DESY Meeting, May 26, 2023

Mikael Berggren (DESY)

First look at pysics analysis at HALFH

「∂ ▶ ◀ ≧ ▶ ◀ ≧ ▶ Ξ シ へへ FC@DESY Meeting, May 26, 2023 1/9

Hybrid Asymmetric Linear Higgs Factory (HALHF)

3

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^-
 ightarrow \mu\mu$.
 - Track momentum resolution.

・ロト ・回ト ・ヨト ・ヨト - ヨ

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^-
 ightarrow \mu\mu$.
 - Track momentum resolution.

・ロト ・回ト ・ヨト ・ヨト - ヨ

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^- \rightarrow \mu\mu$.
 - Track momentum resolution.

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^- \rightarrow \mu\mu$.
 - Track momentum resolution.

(D) (A) (A) (A) (A) (A)

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

-

イロン イヨン イヨン イヨン

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

イロト イポト イヨト イヨト

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

Image: A matrix

25000 20000 15000 5000 10000 115 120 125 130 M_{bec}[GeV]

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

э

A B K A B K

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

Preliminary uptake

- Look at e+
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

 The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

Preliminary uptake

- Look at e⁺
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

125

130 13 M_{Recoil} [GeV]

Preliminary uptake

- Look at e⁺
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

125

130 13 M_{Recoil} [GeV]

Preliminary uptake

- Look at e⁺
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

Modify detector length (Easy to do with SGV)

ILD at ILC and ILD at HALHF

- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

Modify detector length (Easy to do with SGV)

- ILD at ILC and ILD at HALHF
- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

Modify detector length (Easy to do with SGV)

- ILD at ILC and ILD at HALHF
- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

Modify detector length (Easy to do with SGV)

- ILD at ILC and ILD at HALHF
- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

What about fermion pairs, and things like A_{FB}?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

3

What about fermion pairs, and things like AFB ?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- In or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

What about fermion pairs, and things like AFB ?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

What about fermion pairs, and things like AFB ?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

• Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p

 To compare apples with apples with boosted system: look at σ(p) vs. p

- Not $\propto p^2$, rather to P^1
- ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM .

... and forward.

- Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM .
 - ... and forward.

Image: A matrix

- Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM .
 - ... and forward.

 $\begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix} = \begin{bmatrix} -90^{0} \\ -40^{0} \\ -30^{0} \\ -20^{0} \\ 10^{-1} \\ 10^{-$

II C

- Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM ...
 - ... and forward.

- Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM ...
 - ... and forward.

ILC and HALHF (forward)

Bhabha at HALHF

What about Bhabhas, the standard candle for luminosity measurement?

- Luminousity is a source of systematic errors everywhere.
- \Rightarrow need per mil level control.
- Need back-to-back coincidence at as low angles as possible.
- In ILD: LumiCal at 2-5 degrees, with only vacuum in front.
- $\bullet\,$ But with HALHF: already \sim 10 degrees in CM system outside acceptance...
- Need to study this ...

3

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

Bhabha at HALHF

What about Bhabhas, the standard candle for luminosity measurement?

- Luminousity is a source of systematic errors everywhere.
- \Rightarrow need per mil level control.
- Need back-to-back coincidence at as low angles as possible.
- In ILD: LumiCal at 2-5 degrees, with only vacuum in front.
- But with HALHF: already \sim 10 degrees in CM system outside acceptance...
- Need to study this ...

3

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Bhabha at HALHF

What about Bhabhas, the standard candle for luminosity measurement?

- Luminousity is a source of systematic errors everywhere.
- \Rightarrow need per mil level control.
- Need back-to-back coincidence at as low angles as possible.
- In ILD: LumiCal at 2-5 degrees, with only vacuum in front.
- But with HALHF: already \sim 10 degrees in CM system outside acceptance...
- Need to study this ...

More work needed:

- Beam-spectrum ?
- Pairs-background is it better/worse/similar to ILC ?
 - ... and adapt lowest angle detectors to this
- Luminosity measurement: How to do that when bhabha's are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Need tools development for asymmetric beams.

More work needed:

- Beam-spectrum ?
- Pairs-background is it better/worse/similar to ILC ?
 - ... and adapt lowest angle detectors to this
- Luminosity measurement: How to do that when bhabha's are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Need tools development for asymmetric beams.

More work needed:

- Beam-spectrum ?
- Pairs-background is it better/worse/similar to ILC ?
 - ... and adapt lowest angle detectors to this
- Luminosity measurement: How to do that when bhabha's are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Need tools development for asymmetric beams.

More work needed:

- Beam-spectrum ?
- Pairs-background is it better/worse/similar to ILC ?
 - ... and adapt lowest angle detectors to this
- Luminosity measurement: How to do that when bhabha's are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Need tools development for asymmetric beams.

• □ ▶ • • □ ▶ • □ ▶ • • □ ▶

More work needed:

- Beam-spectrum ?
- Pairs-background is it better/worse/similar to ILC ?
 - ... and adapt lowest angle detectors to this
- Luminosity measurement: How to do that when bhabha's are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Need tools development for asymmetric beams.

3

- A B A A B A -