Introduction to Accelerator Physics

Part 4

Pedro Castro / Accelerator Physics Group (MPY) Hamburg, 25th July 2023

LHC commissioning

Electrical arc between C24 and Q24

- ~6 tonnes of liquid He lost
- contamination of the vacuum tube
- damage of 53 superconducting magnets

LHC commissioning

Page 4

Low Energy Antiproton Ring (LEAR) at CERN (built in 1982)

Electromagnet

permeability of iron = 300...10000 larger than air

Dipole magnet

Dipole magnet cross section

increase B \rightarrow increase current, but power dissipated P = $R \cdot I^2$ \rightarrow large conductor cables

Dipole magnet cross section

Dipole magnet

Dipole magnet

Low Energy Antiproton Ring (LEAR) at CERN

Dipole magnet cross section

C magnet + C magnet = H magnet

Dipole magnet cross section (another design)

Superconductivity

using superconducting cables

- → large conductor cables
- → saturation effects

- increase B \rightarrow increase current, but power dissipated $P = R \cdot I^2$
 - → large conductor cables
 - → saturation effects

Saturation of iron: 1.6 – 2 T

Superconducting dipole magnets

Superconducting dipole magnets: cross section

Tevatron	HERA	RHIC	LHC
Fermilab Chicago (USA)	DESY Hamburg (Germany)	Brookhaven Long Island (USA)	CERN Geneva (Switzerland)
4.5 T	5.3 T	3.5 T	8.3T
		RUS SLOT COLL SAGE U COLL COLL BEA COLL COLL COLL COLL COLL COLL COLL COL	

Superconducting dipole magnets

J = uniform current density

LHC dipole coils in 3D

LHC dipole coils in 3D

LHC DIPOLE : STANDARD CROSS-SECTION

Superconducting dipole magnets

LHC dipole magnet interconnection:

Superconducting dipole magnets

LHC dipole magnet interconnection:

dipole bus bar splice (electrical joint)

• Resistance measurements and X-ray pictures have shown the presence of many of such defective joints in the machine

September 19, 2008

- Ramping the dipole current to 9.3 kA (6.5 T)
- At 8.7 kA, an electrical arc developed in a dipole bus bar splice, which punctured the helium enclosure
- The magnetic energy stored in one dipole string (1 octant) at 8.7kA (6.1 T) is 600 MJ which is equivalent to 140 tonnes of TNT

September 19, 2008

- Ramping the dipole current to 9.3 kA (6.5 T)
- At 8.7 kA, an electrical arc developed in a dipole bus bar splice, which punctured the helium enclosure
- The magnetic energy stored in one dipole string (1 octant) at 8.7kA (6.1 T) is 600 MJ which could heat and melt 900 kg of copper

September 19, 2008

Ramping the dipole current to 9.3 kA (6.5 T)
At 8.7 kA, an electrical arc developed in a dipole bus bar splice, which punctured the helium enclosure

The LHC repairs in detail

Phase I Surfacing of bus bar and installation of redundant shunts by soldering

The Nobel Prize in Physics 2013

© Nobel Media AB. Photo: A. Mahmoud François Englert Prize share: 1/2

© Nobel Media AB. Photo: A. Mahmoud Peter W. Higgs Prize share: 1/2

The Nobel Prize in Physics 2013 was awarded jointly to François Englert and Peter W. Higgs "for the theoretical discovery of a mechanism that contributes to our understanding of the origin of mass of subatomic particles, and which recently was confirmed through the discovery of the predicted fundamental particle, by the ATLAS and CMS experiments at CERN's Large Hadron Collider."

Summing-up of this part

"I cannot teach anybody anything, I can only make them think." (Socrates)

Contact

DESY. Deutsches Elektronen-Synchrotron Pedro Castro MPY pedro.castro@desy.de

www.desy.de