

LHC Physics – Electroweak and Top

DESY Summer Student Lectures, 10.08-11.08.2023

Claudia Seitz

LHC Physics goals

Measure

Standard Model

parameters with high precision Search for the

Higgs boson

and measure it's properties

Large Hadron Collider

They Standard model and the Feynman picture

Gauge boson self-interaction

Gauge boson fermion interactions

They Standard model and the Feynman picture

Wikipedia

The SM free parameters

- ► 9 fermion masses
- ► 3 CKM mixing angles + 1 phase
- ► 1 electromagnetic coupling constant (fine structure constant) α
- > 1 strong coupling constant α_s
- ► 1 weak coupling constant (Fermi constant) G_F
- \succ 1 Z mass
- ► 1 Higgs mass

Goals:

- Measure them
- Measure redundant parameters and test the SM relations between them by doing a consistency check

Connections between the parameters mw the weak mixing angle $\sin^2 \theta_W$

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

$$m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F}$$

The SM free parameters

- ► 9 fermion masses
- ► 3 CKM mixing angles + 1 phase
- ► 1 electromagnetic coupling constant (fine structure constant) α
- \succ 1 strong coupling constant α_s
- ► 1 weak coupling constant (Fermi constant) G_F
- \succ 1 Z mass
- ► 1 Higgs mass

Goals:

- Measure them
- Measure redundant parameters and test the SM relations between them by doing a consistency check

 $1/\alpha = 137.03599084$ (21)

determined from the quantum Hall effect or the anomalous magnetic moment of the electron

 $GF = 1.166 3787 \times 10^{-5} GeV^{-2}$ measured from the muon lifetime

 $m_z = 91.1876 \pm 0.0021 \text{ GeV}$ measured at LEP

$\mathbf{\nabla}$	
\square	
J.	
\bigcirc	
Ú	

The Cabibbo—Kobayashi—Maskawa CKM matrix

Contains information about flavor-changing weak interactions

CKM matrix as of 2020 (from <u>PDG</u>)

$$egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix} =$$

 $(0.97401 \pm 0.00011 \quad 0.22650 \pm 0.00048)$ 0.22636 ± 0.00048 $0.00854\substack{+0.00023\\-0.00016}$

 0.97320 ± 0.00011 $0.03978\substack{+0.00082\\-0.00060}$

0.003610.040530.999172

Z-boson at LEP

- Large Electron-Positron Collider
 - ► in operation at CERN 1989-2000
- ► Z bosons are represented by a clean peak in the invariant mass spectrum of the two leptons
 - Precise measurements of the properties from LEP
 - ► Mass: 91.1876± 0.0021 GeV

Fun-fact: the main Z-boson decay mode is the decay to quarks (\sim 70%) or neutrinos (\sim 20%)

Particles		Branching ratio	
Name	Symbols	Predicted for $x = 0.23$	Experimental measurements ^[20]
Neutrinos (all)	$\nu_e^{}, \nu_\mu^{}, \nu_\tau^{}$	20.5%	20.00 ±0.06%
Charged leptons (all)	e^{-},μ^{-},τ^{-}	10.2%	10.097 ±0.003%
Electron	e	3.4%	3.363 ±0.004%
Muon	μ	3.4%	3.366 ±0.007%
Tau	τ_	3.4%	3.367 ±0.008%
Hadrons (except * t)		69.2%	69.91 ±0.06%
Down-type quarks	d, s, b	15.2%	15.6 ±0.4%
Up-type quarks	u, c	11.8%	11.6 ±0.6%

Re-discover Z boson at the LHC

- Characteristic clean signature: 2 opposite charge, same flavor leptons
- ► Z bosons are used as "standard candles" at the LHC

Events / GeV

Z+jets measurements

- Z produced in association with extra (b)jets is an important process and background for many searches for new physics
- Understanding of the Z boson pT spectrum is important
 - Unfolding technique often used to turn "measured" data spectrum into particle level spectrum
 - Unfolded spectrum can then be easily compared with various simulated samples

Z bosons as standard candles

Energy/momentum calibration

- adjust the position of the Z peak until it corresponds to the value we expect
 - \Rightarrow done by adjusting the energy/momentum scale

Lepton efficiency measurements

- need clean sample of leptons to measure reconstruction/identification/ isolation efficies
 - "Tag and Probe" method
 - select two lepton candidates with tight (Tag) and looser (Probe) selection criteria
 - Require the di-lepton mass to be around the Z peak
 ⇒ likely that both leptons are "good" leptons

W bosons

- - 10.4 W⁻ events collected (e + μ)

ATLAS W mass measurement

- > m^l_T: Less sensitive to modeling but needs good understanding of missing transverse energy

 m_W

=

► 13 TeV low mu dataset on tape \Rightarrow stay tuned!

Analysis strategy based on two kinematic distributions fitted in several categories

 80370 ± 7 (stat.) ± 11 (exp. syst.) ± 14 (mod. syst.) MeV

W+ vs W- Asymmetry

- At the Tevatron W+(W-) bosons are produced mainly in proton (antiproton) directions
- At the LHC W+ bosons are produced at higher rate than W- bosons
 - ► W- bosons are produced centrally
 - ► W+bosons are produced at larger rapidities
- ► Main cause of these asymmetries:
 - on average: u quark carries more proton momentum fraction than the d quark
 - more valence quark involved in W+ bosons at the LHC

In practice: Measure lepton charge asymmetry

 $\mathcal{A}(\eta) = \frac{\sigma_{\eta}^{+} - \sigma_{\eta}^{-}}{\sigma_{\eta}^{+} + \sigma_{\eta}^{-}},$

Measurements can help to constrain u and d PDFs

Going to rarer and rarer SM processes

Standard Model Total Production Cross Section Measurements

Status: February 2022

Interlude: fiducial cross sections

Top quark pair production

- ► Top quark discovered 1995 at the Tevatron
- ► Heaviest quark in the SM
 - decays before it can hadronize
 - almost exclusively into Wb

full hadronic
semileptonic
dileptonic

► Has become a "standard candle" at the LHC

Top quark pair production

- ► Top quark discovered 1995 at the Tevatron
- Heaviest quark in the SM
 - decays before it can hadronize
 - almost exclusively into Wb

Top pair production cross section

- precise determination of cross section
- *eµ channel very clean*
- excellent signal to background ratio
- lower stats (4%) -

Excellent agreement between measurement and NNLO+NNLL prediction

Top pair production cross section

- best compromise between statistics (30%) and signal to background ratio

Excellent agreement between measurement and NNLO+NNLL prediction

Top pair production cross section

- largest stats (50%)
- but larger multi-jet background and -
- large combinatorics -

Excellent agreement between measurement and NNLO+NNLL prediction

Hot of the press: First Run3 results

> CMS and ATLAS released first results of ttbar cross sections measurements with first Run3 data (1.2 to 11 fb⁻¹) in the di-lepton channel

1 2 ≥3 b-tagged 77% WP jet multiplicity

Measuring the top quark mass

- All channels have been used to measure the top quark mass
- Semi-leptonic channel often yielding best results

Most precise measurement: 171.77 ± 0.38 GeV (including 0.04 GeV statistical uncertainty)

total stat $m_{top} \pm total (stat \pm syst)$ $173.29 \pm 0.95 (0.35 \pm 0.88)$ $173.34 \pm 0.76 (0.36 \pm 0.67)$ $172.33 \pm 1.27 (0.75 \pm 1.02)$ $173.79 \pm 1.41 (0.54 \pm 1.30)$ $175.1 \pm 1.8 (1.4 \pm 1.2)$ $172.2 \pm 2.1 (0.7 \pm 2.0)$ $172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$	√ s Ref. 7 TeV [1] 1.96-7 TeV 7 TeV [3] 7 TeV [3] 7 TeV [4]
total stat $m_{top} \pm total (stat \pm syst)$ 173.29 ± 0.95 (0.35 ± 0.88) 173.34 ± 0.76 (0.36 ± 0.67) 172.33 ± 1.27 (0.75 ± 1.02) 173.79 ± 1.41 (0.54 ± 1.30) 175.1 ± 1.8 (1.4 ± 1.2) 172.2 ± 2.1 (0.7 ± 2.0) 172.99 ± 0.85 (0.41 ± 0.74) 173.72 ± 1.15 (0.55 ± 1.01)	√ s Ref. 7 TeV [1] 1.96-7 TeV 7 TeV [3] 7 TeV [3] 7 TeV [4]
$m_{top} \pm total (stat \pm syst)$ $173.29 \pm 0.95 (0.35 \pm 0.88)$ $173.34 \pm 0.76 (0.36 \pm 0.67)$ $172.33 \pm 1.27 (0.75 \pm 1.02)$ $173.79 \pm 1.41 (0.54 \pm 1.30)$ $175.1 \pm 1.8 (1.4 \pm 1.2)$ $172.2 \pm 2.1 (0.7 \pm 2.0)$ $172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$	√ s Ref. 7 TeV [1] 1.96-7 TeV 7 TeV [3] 7 TeV [3] 7 TeV [4]
$173.29 \pm 0.95 (0.35 \pm 0.88)$ $173.34 \pm 0.76 (0.36 \pm 0.67)$ $172.33 \pm 1.27 (0.75 \pm 1.02)$ $173.79 \pm 1.41 (0.54 \pm 1.30)$ $175.1 \pm 1.8 (1.4 \pm 1.2)$ $172.2 \pm 2.1 (0.7 \pm 2.0)$ $172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$	7 TeV [1] 1.96-7 TeV 7 TeV [3] 7 TeV [3] 7 TeV [4]
$173.34 \pm 0.76 (0.36 \pm 0.67)$ $172.33 \pm 1.27 (0.75 \pm 1.02)$ $173.79 \pm 1.41 (0.54 \pm 1.30)$ $175.1 \pm 1.8 (1.4 \pm 1.2)$ $172.2 \pm 2.1 (0.7 \pm 2.0)$ $172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$	7 TeV [1] 1.96-7 TeV 7 TeV [3] 7 TeV [3] 7 TeV [4]
$172.33 \pm 1.27 (0.75 \pm 1.02)$ $173.79 \pm 1.41 (0.54 \pm 1.30)$ $175.1 \pm 1.8 (1.4 \pm 1.2)$ $172.2 \pm 2.1 (0.7 \pm 2.0)$ $172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$	7 TeV [3] 7 TeV [3] 7 TeV [4]
$\begin{array}{c c} & 173.79 \pm 1.41 & (0.54 \pm 1.30) \\ \hline & 175.1 \pm 1.8 & (1.4 \pm 1.2) \\ \hline & 172.2 \pm 2.1 & (0.7 \pm 2.0) \\ \hline & 172.99 \pm 0.85 & (0.41 \pm 0.74) \\ \hline & 173.72 \pm 1.15 & (0.55 \pm 1.01) \end{array}$	7 TeV [3] 7 TeV [4]
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	7 TeV [4]
$172.2 \pm 2.1 (0.7 \pm 2.0)$ $172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$,
$172.99 \pm 0.85 (0.41 \pm 0.74)$ $173.72 \pm 1.15 (0.55 \pm 1.01)$	8 TeV [5]
173.72 ± 1.15 (0.55 ± 1.01)	8 TeV [6]
	8 TeV [7]
$172.08 \pm 0.91 \; (0.39 \pm 0.82)$	8 TeV [8]
172.69 \pm 0.48 (0.25 \pm 0.41)	7+8 TeV [8
174.48 ± 0.78 (0.40 ± 0.67)	13 TeV [9]
173.49 ± 1.06 (0.43 ± 0.97)	7 TeV [10]
172.50 ± 1.52 (0.43 ± 1.46)	7 TeV [11]
173.49 ± 1.41 (0.69 ± 1.23)	7 TeV [12]
$172.35 \pm 0.51 \; (0.16 \pm 0.48)$	8 TeV [13]
172.82 ± 1.23 (0.19 ± 1.22)	8 TeV [13]
$172.32 \pm 0.64 \; (0.25 \pm 0.59)$	8 TeV [13]
172.95 ± 1.22 (0.77 ± 0.95)	8 TeV [14]
172.44 \pm 0.48 (0.13 \pm 0.47)	7+8 TeV [1
$172.25 \pm 0.63 \; (0.08 \pm 0.62)$	13 TeV [15
$172.33 \pm 0.70 \; (0.14 \pm 0.69)$	13 TeV [16
$172.34 \pm 0.73 \; (0.20 \pm 0.70)$	13 TeV [17
$172.13 \pm 0.77 \; (0.32 \pm 0.70)$	13 TeV [18
171.77 ± 0.38	13 TeV [19
$172.76 \pm 0.81 \ (0.22 \pm 0.78)$	13 TeV [20
[1] ATLAS-CONF-2013-102 [8] EPJC 79 (2019) 290 [2] arXiv:1403 4427 [9] ATLAS-CONF-2019-046	[15] EPJC 78 (2018)
[3] EPJC 75 (2015) 330 [10] JHEP 12 (2012) 105 [4] EPJC 75 (2015) 158 [11] EPJC 72 (2012) 2202	[17] EPJC 79 (2019) [18] arXiv:2108 1040
[5] ATLAS-CONF-2014-055 [12] EPJC 74 (2014) 2758 [6] PLB 761 (2016) 350 [13] PRD 93 (2016) 072004	[19] CMS-PAS-TOP-
[7] JHEP 09 (2017) 118 [14] EPJC 77 (2017) 354	[20] UNIS-FAS-TOP-2
175 160	185
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Single top quark production

- ➤ Much rarer process compared to pair production (~ factor 3 lower at 13TeV)
 - Three main production modes

√*s* [TeV]

Going to rarer and rarer SM processes

Standard Model Total Production Cross Section Measurements

Status: February 2022

Multi-boson production

- SM predicts self-interaction of vector bosons
 - without a light Higgs boson:
 scattering of longitudinal
 polarized W bosons would
 violate unitarity

Same-sign WW

- Signal selection
 - ► 2 jets with large separation large invariant mass
 - ► 2 leptons, same charge
 - reduces Z+jets background
 - charge mis-ID is a challenge
 - ► MET
- ► Backgrounds
 - ► WZ with one lepton lost 3 lepton CR
 - lepton fakes estimated from data

bin Events / 150 100

50

Observed (expected) significance of 5.5 (5.7) sigma

ZZ production

- Signal selection
 - ► 2 jets with large separation large invariant mass
 - ► 4 leptons same-sign opposite flavor
 - ► or 2 leptons + MET

From kinematic variables to Inputs to BDT:

mjj, $\Delta y(j1,j2)$, pT(j1) $pT(j2), pT(Z boson) \dots$

[*arXiv*:2004.10612]

- *improved discriminators*

Significances

- > Different ways of estimating this, with various approximations
- Translate probability into standard deviations

► How likely is the excess produced by a statistical fluctuation of the background?

imagine this plot without the yellow histogram

 $0.05 \Rightarrow 2 \text{ sigma}$ $0.003 \Rightarrow 3 \text{ sigma (evidence)}$ $0.000003 \Rightarrow 5 \text{ sigma (discovery)}$

A word on global SM fits

► The fine structure constant:

► 1/**α** = 137.035999084 (21)

determined from the quantum Hall effect or the anomalous magnetic moment of the electron

- ► The Fermi constant:
 - ► $GF = 1.166 3787 \times 10^{-5} \text{ GeV}^{-2}$

measured from the muon lifetime

► The Z boson mass

 $> m_Z = 91.1876 \pm 0.0021 \text{ GeV}$

measured at LEP

From these can calculate m_W the weak mixing angle $sin^2 \theta_W$

$$\sin^2 \theta_W = 1 - \frac{m_W^2}{m_Z^2}$$

$$m_W^2 \sin^2 \theta_W = \frac{\pi \alpha}{\sqrt{2}G_F}$$

We haven't discussed the Higgs yet, but lets assume it exists!

A word on global SM fits

> Top, W, Higgs mass are related through higher order corrections

► Idea of electroweak fits:

≻

- measure many different observables
- calculate the relations between all observables
- measure redundant observables => probe consistency of Standard Model
- predict observables => Higgs mass before the discovery!

Standard Model fits before the Higgs discovery: 2012

https://arxiv.org/pdf/1107.0975.pdf

Predicting the top and W mass from SM parameter measurements

Standard Model fits before the Higgs discovery: 2012

https://arxiv.org/pdf/1107.0975.pdf

Predicting the top and W mass from SM parameter measurements

including Higgs search results

including top and W mass measurements

Next Lecture

Measure

Standard Model

parameters with high precision Search for the

Higgs boson

and measure it's properties

Large Hadron Collider

https://upload.wikimedia.org/wikipedia/commons/7/75/ Standard_Model_Feynman_Diagram_Vertices.png

