QCD for Collider Physics Part 3

M. Diehl

Deutsches Elektronen-Synchroton DESY

DESY Summer Student Programme 2023, Hamburg

Factorisation
000000

The parton model

describe deep inelastic scattering, Drell-Yan process, etc.

fast-moving hadron

pprox set of free partons (q, \bar{q}, g) with low transverse momenta

physical cross section

= cross section for partonic process $(\gamma^* q \rightarrow q, q\bar{q} \rightarrow \gamma^*)$

 \times parton densities

Deep inelastic scattering (DIS): $\ell p \rightarrow \ell X$

Drell-Yan: $pp \to \ell^+ \ell^- X$

Nobel prize 1990 for Friedman, Kendall, Taylor

Factorisation
0000000

The parton model

describe deep inelastic scattering, Drell-Yan process, etc.

- fast-moving hadron
 - pprox set of free partons (q,ar q,g) with low transverse momenta
- physical cross section
 - = cross section for partonic process $(\gamma^* q \rightarrow q, q\bar{q} \rightarrow \gamma^*)$
 - \times parton densities

Factorisation

implement and correct parton-model ideas in QCD

- conditions and limitations of validity kinematics, processes, observables
- corrections: partons interact

 α_s small at large scales \leadsto perturbation theory

 define parton densities in field theory derive their general properties make contact with non-perturbative methods Evolution 00000000 Event generators

Factorisation: physics idea and technical implementation

idea: separation of physics at different scales

- high scales: quark-gluon interactions
 ~> compute in perturbation theory
- low scale: proton \rightarrow quarks, antiquarks, gluons \rightsquigarrow parton densities
- ► requires hard momentum scale in process large photon virtuality $Q^2 = -q^2$ in DIS

Evolution 00000000 Event generators

Factorisation: physics idea and technical implementation

implementation: separate process into

- "hard" subgraph *H* with particles far off-shell compute in perturbation theory
- "collinear" subgraph A with particles moving along proton turn into definition of partOn density

Collinear expansion

- graph gives $\int d^4k H(k)A(k)$; simplify further
- ▶ light-cone coordinates: $v^{\pm} = \frac{1}{\sqrt{2}} (v^0 \pm v^3)$, $v = (v^1, v^2)$ more detail \rightsquigarrow blackboard

Collinear expansion

- graph gives $\int d^4k H(k)A(k)$; simplify further
- in hard graph neglect small components of external lines
 Taylor expansion

$$H(k^+, k^-, k_T) = H(k^+, 0, 0) +$$
corrections

 \rightsquigarrow loop integration greatly simplifies:

 $\int d^4k \ H(k) \ A(k) \approx \int dk^+ \ H(k^+, 0, 0) \ \int dk^- d^2k_T \ A(k^+, k^-, k_T)$

- ▶ in hard scattering treat incoming/outgoing partons as exactly collinear (k_T = 0) and on-shell (k⁻ = 0)
- ▶ in collin. matrix element integrate over k_T and virtuality
 → collinear (or k_T integrated) parton densities only depend on k⁺ = xp⁺

further subtleties related with spin of partons, not discussed here

Definition of parton distributions

matrix elements of quark/gluon operators

$$f_q(x) = \int \frac{dz^-}{2\pi} e^{ixp^+z^-} \left\langle p \left| \bar{\psi}(0) \frac{1}{2} \gamma^+ \psi(z) \left| p \right\rangle \right|_{z^+=0, z_T=0} \right.$$

 $\psi(z) = {\rm quark}$ field operator: annihilates quark

 $\bar{\psi}(0) = {
m conjugate field operator: creates quark}$

$$\frac{1}{2}\gamma^+ =$$
 matrix in Dirac space: sums over quark spin
$$\int \frac{dz^-}{2\pi} e^{ixp^+z^-} \text{ projects on quarks with } k^+ = xp^+$$

- analogous definitions for polarised quarks, antiquarks, gluons
- analysis of factorisation used Feynman graphs but here provide non-perturbative definition

further subtleties related with choice of gauge, not discussed here

Factorisation for pp collisions

• example: Drell-Yan process $pp \rightarrow \gamma^* + X \rightarrow \mu^+ \mu^- + X$ where X = any number of hadrons

one parton distribution for each proton × hard scattering ~> deceptively simple physical picture

Factorisation for pp collisions

- ► example: Drell-Yan process $pp \rightarrow \gamma^* + X \rightarrow \mu^+ \mu^- + X$ where X = any number of hadrons

- "spectator" interactions produce additional particles which are also part of unobserved system X ("underlying event")
- need not calculate this thanks to unitarity as long as cross section/observable sufficiently inclusive
- but must calculate/model if want more detail on the final state

More complicated final states

- production of W, Z or other colourless particle (Higgs, etc) same treatment as Drell-Yan
- ▶ jet production in ep or pp: hard scale provided by p_T
- heavy quark production: hard scale is m_c , m_b , m_t

Importance of factorisation concept

- describe processes for study of electroweak and BSM physics, e.g.
 - W mass measurement
 - determination of Higgs boson properties
 - signal and background in new physics searches
- determine parton densities as a tool to make predictions and to learn about proton structure
 - requires many processes to disentangle quark flavors and gluons

A closer look at one-loop corrections

example: DIS

UV divergences removed by standard renormalisation

- soft divergences cancel in sum over graphs
- collinear div. do not cancel, have integrals

$$\int\limits_{0} \frac{dk_T^2}{k_T^2}$$

what went wrong?

Evolution

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorisation scale μ

with cutoff: take k_T > μ 1/μ ~ transverse resolution take $k_T < \mu$

Evolution 0000000

- hard graph should not contain internal collinear lines collinear graph should not contain hard lines
- must not double count \rightsquigarrow factorisation scale μ

- with cutoff: take $k_T > \mu$ $1/\mu \sim$ transverse resolution
- in dim. reg.: subtract collinear divergence

take $k_T < \mu$

subtract ultraviolet div.

QCD for Collider Physics

The evolution equations

DGLAP equations

$$\frac{d}{d\log\mu^2} f(x,\mu) = \int_x^1 \frac{dx'}{x'} P\left(\frac{x}{x'}\right) f(x',\mu) = \left(P \otimes f(\mu)\right)(x)$$

- \blacktriangleright P = splitting functions
 - have perturbative expansion

$$P(x) = \alpha_s(\mu) P^{(0)}(x) + \alpha_s^2(\mu) P^{(1)}(x) + \alpha_s^3(\mu) P^{(2)}(x) \dots$$

known to $\mathcal{O}(\alpha_s^3),$ in part to $\mathcal{O}(\alpha_s^4)$ — Moch, Vermaseren, Vogt

• contains terms $\propto \delta(1-x)$ from virtual corrections

x' 999

Evolution

quark and gluon densities mix under evolution:

matrix evolution equation

 \blacktriangleright parton content of proton depends on resolution scale μ

Factorisation formula

• example:
$$p + p \rightarrow H + X$$

$$\sigma(p+p \to H+X) = \sum_{i,j=q,\bar{q},g} \int dx_i \, dx_j \, f_i(x_i,\mu_F) \, f_j(x_j,\mu_F)$$
$$\times \hat{\sigma}_{ij}\left(x_i,x_j,\alpha_s(\mu_R),\mu_R,\mu_F,m_H\right) + \mathcal{O}\left(\frac{\Lambda^2}{m_H^4}\right)$$

- $\hat{\sigma}_{ij} = {\rm cross}$ section for hard scattering $i+j \to H+X$ m_H provides hard scale
- μ_R = renormalisation scale, μ_F = factorisation scale may take different or equal
- μ_F dependence in C and in f cancels up to higher orders in α_s similar discussion as for μ_R dependence
- accuracy: α_s expansion and power corrections ${\cal O}(\Lambda^2/m_H^2)$

 \blacktriangleright can make σ and $\hat{\sigma}$ differential in kinematic variables, e.g. p_T of H

Scale dependence

Mistlberger, arXiv:1802.00833

 $\mu_F = \mu_R = \mu$

QCD for Collider Physics

LO, NLO, and higher

- instead of varying scale(s) may estimate higher orders by comparing NⁿLO result with Nⁿ⁻¹LO
- caveat: comparison NLO vs. LO may not be representative for situation at higher orders

often have especially large step from LO to NLO

- certain types of contribution may first appear at NLO e.g. terms with gluon density g(x) in DIS, $pp \rightarrow Z + X$, etc.
- final state at LO may be too restrictive

e.g. in $\frac{d\sigma}{dE_{T1}\,dE_{T2}}$ for dijet production

Summary so far

- implements ideas of parton model in QCD
 - perturbative corrections (NLO, NNLO, ...)
 - field theoretical def. of parton densities
 → bridge to non-perturbative QCD
- valid for sufficiently inclusive observables and up to power corrections in Λ/Q or (Λ/Q)² which are in general not calculable
- must in a consistent way
 - remove collinear kinematic region in hard scattering
 - remove hard kinematic region in parton densities
 ↔ UV renormalisation

procedure introduces factorisation scale μ_F

• separates "collinear" from "hard", "object" from "probe"

And now for something completely different

a few words about general-purpose event generators e.g. Herwig, Pythia, Sherpa

note: Many other generators exist, often with a specialised scope and approach. Not all of them fit the description given in the following.

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

parton densities and hard-scattering matrix elements

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)
- models for multiparton interactions

- ▶ build on structure of factorisation formulae e.g. for $pp \rightarrow H + g + X$
- but compute fully specified events, i.e. no "+X" schematically:

ingredients:

- parton densities and hard-scattering matrix elements
- parton showers: collinear and soft radiation from partons in initial and final state (in perturbative region)
- models for multiparton interactions and hadronisation

Instead of a summary:

