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Factorisation Evolution Event generators

The parton model
▶ describe deep inelastic scattering, Drell-Yan process, etc.

• fast-moving hadron
≈ set of free partons (q, q̄, g) with low transverse momenta

• physical cross section
= cross section for partonic process (γ∗q → q, qq̄ → γ∗)
× parton densities

Deep inelastic scattering (DIS): ℓp→ ℓX Drell-Yan: pp→ ℓ+ℓ−X

Nobel prize 1990 for

Friedman, Kendall, Taylor
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Factorisation Evolution Event generators

The parton model
▶ describe deep inelastic scattering, Drell-Yan process, etc.

• fast-moving hadron
≈ set of free partons (q, q̄, g) with low transverse momenta

• physical cross section
= cross section for partonic process (γ∗q → q, qq̄ → γ∗)
× parton densities

Factorisation
▶ implement and correct parton-model ideas in QCD

• conditions and limitations of validity
kinematics, processes, observables

• corrections: partons interact
αs small at large scales ⇝ perturbation theory

• define parton densities in field theory
derive their general properties
make contact with non-perturbative methods
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Factorisation Evolution Event generators

Factorisation: physics idea and technical implementation
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▶ idea: separation of physics at different scales

• high scales: quark-gluon interactions
⇝ compute in perturbation theory

• low scale: proton → quarks, antiquarks, gluons
⇝ parton densities

▶ requires hard momentum scale in process
large photon virtuality Q2 = −q2 in DIS
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Factorisation Evolution Event generators

Factorisation: physics idea and technical implementation

H

A
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▶ implementation: separate process into

• “hard” subgraph H with particles far off-shell
compute in perturbation theory

• “collinear” subgraph A with particles moving along proton
turn into definition of partOn density
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Factorisation Evolution Event generators

Collinear expansion

▶ graph gives
∫
d4kH(k)A(k); simplify further

H

A

k

p

q

▶ light-cone coordinates: v± = 1√
2
(v0 ± v3), v = (v1, v2)

more detail ⇝ blackboard
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Factorisation Evolution Event generators

Collinear expansion

▶ graph gives
∫
d4kH(k)A(k); simplify further

H

A

k

p

q

▶ in hard graph neglect small components of external lines
⇝ Taylor expansion

H(k+, k−, kT ) = H(k+, 0, 0) + corrections

⇝ loop integration greatly simplifies:∫
d4k H(k)A(k) ≈

∫
dk+H(k+, 0, 0)

∫
dk−d2kT A(k

+, k−, kT )

▶ in hard scattering treat incoming/outgoing partons as
exactly collinear (kT = 0) and on-shell (k− = 0)

▶ in collin. matrix element integrate over kT and virtuality
⇝ collinear (or kT integrated) parton densities

only depend on k+ = xp+

further subtleties related with spin of partons, not discussed here
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Factorisation Evolution Event generators

Definition of parton distributions

▶ matrix elements of quark/gluon operators

H

A

k

p

q

fq(x) =

∫
dz−

2π
eixp

+z− 〈
p
∣∣ψ̄(0) 1

2
γ+ψ(z)

∣∣p〉∣∣∣
z+=0, zT=0

ψ(z) = quark field operator: annihilates quark

ψ̄(0) = conjugate field operator: creates quark

1
2
γ+ = matrix in Dirac space: sums over quark spin∫
dz−

2π
eixp

+z− projects on quarks with k+ = xp+

▶ analogous definitions for polarised quarks, antiquarks, gluons

▶ analysis of factorisation used Feynman graphs
but here provide non-perturbative definition

further subtleties related with choice of gauge, not discussed here
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Factorisation Evolution Event generators

Factorisation for pp collisions

▶ example: Drell-Yan process pp → γ∗ +X → µ+µ− +X
where X = any number of hadrons

▶ one parton distribution for each proton × hard scattering
⇝ deceptively simple physical picture
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Factorisation Evolution Event generators

Factorisation for pp collisions

▶ example: Drell-Yan process pp → γ∗ +X → µ+µ− +X
where X = any number of hadrons

▶ one parton distribution for each proton × hard scattering
⇝ deceptively simple physical picture

▶ “spectator” interactions produce additional particles
which are also part of unobserved system X (“underlying event”)

▶ need not calculate this thanks to unitarity
as long as cross section/observable sufficiently inclusive

▶ but must calculate/model if want more detail on the final state
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Factorisation Evolution Event generators

More complicated final states
▶ production of W,Z or other colourless particle (Higgs, etc)

same treatment as Drell-Yan

▶ jet production in ep or pp: hard scale provided by pT

▶ heavy quark production: hard scale is mc, mb, mt

Importance of factorisation concept

▶ describe processes for study of electroweak and BSM physics, e.g.

• W mass measurement
• determination of Higgs boson properties
• signal and background in new physics searches

▶ determine parton densities as a tool to make predictions
and to learn about proton structure

• requires many processes to disentangle quark flavors and gluons
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Factorisation Evolution Event generators

A closer look at one-loop corrections

▶ example: DIS

▶ UV divergences removed by standard renormalisation

▶ soft divergences cancel in sum over graphs

▶ collinear div. do not cancel, have integrals∫
0

dk2T
k2T

what went wrong?
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Factorisation Evolution Event generators

▶ hard graph should not contain internal collinear lines
collinear graph should not contain hard lines

▶ must not double count ⇝ factorisation scale µ

k

▶ with cutoff: take kT > µ
1/µ ∼ transverse resolution

take kT < µ
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Factorisation Evolution Event generators

▶ hard graph should not contain internal collinear lines
collinear graph should not contain hard lines

▶ must not double count ⇝ factorisation scale µ

k

▶ with cutoff: take kT > µ
1/µ ∼ transverse resolution

▶ in dim. reg.:
subtract collinear divergence

take kT < µ

subtract ultraviolet div.
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Factorisation Evolution Event generators

The evolution equations

▶ DGLAP equations

d

d logµ2
f(x, µ) =

∫ 1

x

dx′

x′
P
( x
x′

)
f(x′, µ) =

(
P ⊗ f(µ)

)
(x)

▶ P = splitting functions x′

x

• have perturbative expansion

P (x) = αs(µ) P
(0)(x) + α2

s(µ)P
(1)(x) + α3

s(µ)P
(2)(x) . . .

known to O(α3
s), in part to O(α4

s) Moch, Vermaseren, Vogt

• contains terms ∝ δ(1− x) from virtual corrections x′

x
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Factorisation Evolution Event generators

▶ quark and gluon densities mix under evolution:

▶ matrix evolution equation

d

d logµ2
fi(x, µ) =

∑
j=q,q̄,g

(
Pij ⊗ fj(µ)

)
(x) (i, j = q, q̄, g)

Pgq

PqgPqq

Pgg

more transitions
possible at higher
orders in αs

▶ parton content of proton depends on resolution scale µ
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Factorisation Evolution Event generators

Factorisation formula

▶ example: p+ p → H +X

σ(p+ p→ H +X) =
∑

i,j=q,q̄,g

∫
dxi dxj fi(xi, µF ) fj(xj , µF )

× σ̂ij

(
xi, xj , αs(µR), µR, µF ,mH

)
+O

(
Λ2

m4
H

)

• σ̂ij = cross section for hard scattering i+ j → H +X

mH provides hard scale

• µR = renormalisation scale, µF = factorisation scale
may take different or equal

• µF dependence in C and in f cancels up to higher orders in αs

similar discussion as for µR dependence

• accuracy: αs expansion and power corrections O(Λ2/m2
H)

▶ can make σ and σ̂ differential in kinematic variables, e.g. pT of H
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Factorisation Evolution Event generators

Scale dependence

pp → H + X

LO NLO

NNLO N3LO
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P P -> H+X

Mistlberger, arXiv:1802.00833

µF = µR = µ
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Factorisation Evolution Event generators

LO, NLO, and higher

▶ instead of varying scale(s) may estimate higher orders by comparing
NnLO result with Nn−1LO

▶ caveat: comparison NLO vs. LO may not be representative for
situation at higher orders

often have especially large step from LO to NLO

▶ certain types of contribution may first appear at NLO
e.g. terms with gluon density g(x) in DIS, pp → Z +X, etc.

▶ final state at LO may be too restrictive

e.g. in
dσ

dET1 dET2
for dijet production

ET1

ET2

ET1

ET2
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Factorisation Evolution Event generators

Summary so far

▶ implements ideas of parton model in QCD

• perturbative corrections (NLO, NNLO, . . . )
• field theoretical def. of parton densities
⇝ bridge to non-perturbative QCD

▶ valid for sufficiently inclusive observables

and up to power corrections in Λ/Q or (Λ/Q)2

which are in general not calculable

▶ must in a consistent way

• remove collinear kinematic region in hard scattering
• remove hard kinematic region in parton densities

↔ UV renormalisation

procedure introduces factorisation scale µF

• separates “collinear” from “hard”, “object” from “probe”
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Factorisation Evolution Event generators

And now for something completely different

a few words about general-purpose event generators
e.g. Herwig, Pythia, Sherpa

note: Many other generators exist, often with a specialised scope
and approach. Not all of them fit the description given in the
following.
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Factorisation Evolution Event generators

Monte Carlo generators e.g. Herwig, Pythia, Sherpa

▶ build on structure of factorisation formulae e.g. for pp → H + g+X

▶ but compute fully specified events, i.e. no “+X”
schematically:

p

p

Ht

▶ ingredients:

• parton densities and hard-scattering matrix elements

• parton showers: collinear and soft radiation from partons in
initial and final state (in perturbative region)

• models for multiparton interactions
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Factorisation Evolution Event generators

Monte Carlo generators e.g. Herwig, Pythia, Sherpa

▶ build on structure of factorisation formulae e.g. for pp → H + g+X

▶ but compute fully specified events, i.e. no “+X”
schematically:

▶ ingredients:

• parton densities and hard-scattering matrix elements
• parton showers: collinear and soft radiation from partons in

initial and final state (in perturbative region)

• models for multiparton interactions
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Factorisation Evolution Event generators

Monte Carlo generators e.g. Herwig, Pythia, Sherpa

▶ build on structure of factorisation formulae e.g. for pp → H + g+X

▶ but compute fully specified events, i.e. no “+X”
schematically:

▶ ingredients:

• parton densities and hard-scattering matrix elements
• parton showers: collinear and soft radiation from partons in

initial and final state (in perturbative region)
• models for multiparton interactions
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Factorisation Evolution Event generators

Monte Carlo generators e.g. Herwig, Pythia, Sherpa

▶ build on structure of factorisation formulae e.g. for pp → H + g+X

▶ but compute fully specified events, i.e. no “+X”
schematically:

▶ ingredients:

• parton densities and hard-scattering matrix elements
• parton showers: collinear and soft radiation from partons in

initial and final state (in perturbative region)
• models for multiparton interactions and hadronisation
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Factorisation Evolution Event generators

Instead of a summary:
∫
L dt

[fb−1]
Reference

ZZjj EWK
WZjj EWK

W±W±jj EWK

γγ→WW

Zγjj EWK
WWγ

Wγγ
Zγγt̄tt̄t

γγγ
Zjj EWK

Wjj EWK
WWZ

WWW

t̄tγ

t̄tZ
t̄tW

WV

Zγ
Wγ

γγ

ZZ

WZ

WW

tZj
Wt

ts−chan

tt−chan

t̄t

Z

W

γ

Dijets R=0.4

Jets R=0.4

pp inelastic

pp
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