QCD for Collider Physics Part 4

M. Diehl

Deutsches Elektronen-Synchroton DESY

DESY Summer Student Programme 2023, Hamburg

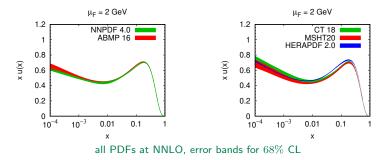
Parton density fits

Parton densities involve QCD at low momentum scales \leftrightarrow large coupling

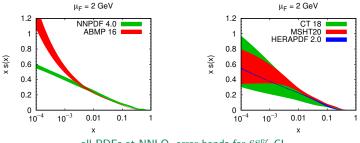
- \blacktriangleright can compute $\partial f(x,\mu)/\partial\mu$ in perturbation theory, but not $f(x,\mu)$
- ongoing effort to compute with non-perturbative methods e.g. in lattice QCD
- in practice: determined from experimental data

Principle of PDF determinations:

- data for observables with factorisation formulae most important: DIS (ep → e + X), Drell-Yan (pp → ℓ⁺ℓ⁻ + X, pp → ℓν + X), jets in ep and pp, tt̄ production in pp, ...
- parameterise PDFs at "starting" scale µ₀ use DGLAP eqs. to evolve to scales µ needed in fact. formulae
- determine PDF parameters by fit to data

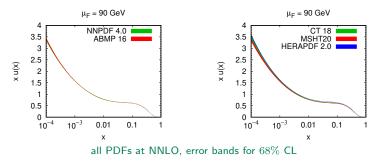

PDFs

Uncertainties on extracted PDFs

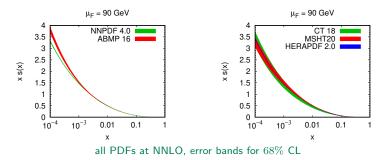

"PDF errors"

- errors (stat. and syst.) of fitted data propagated to PDF parameters
- "systematic theory uncertainties"
 - selection of data sets and kinematics
 - perturbative order of evolution and hard-scattering cross sections
 - values of α_s and m_c, m_b and possibly other constants if taken as external parameters rather than fitted
 - fine details of perturbative calculations
 e.g. treatment of heavy quarks, resummation
 - ▶ power corrections (try to avoid by using data with $Q > Q_{\min}$)

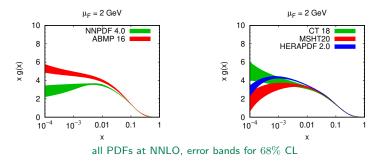
recent work: include uncertainties from higher orders in PDF errors Harland-Lang, Thorne 2018; Khalek et al. 2019; McGowan et al. 2023



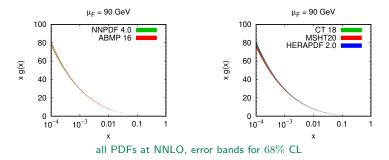
- spread between different parameterisation often larger than error bands of single parameterisation
- error bands propagate uncertainties of fitted data into PDFs but do not reflect "systematic theory uncertainties" of extraction



all PDFs at NNLO, error bands for 68%~CL

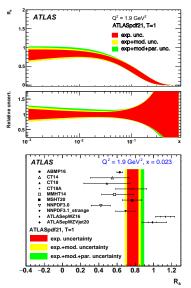

Strangeness distribution remains poorly known sometimes assume s(x) ∝ ū(x) + d̄(x) or s(x) ∝ d̄(x) at μ = μ₀ → small errors in fit

 \blacktriangleright evolution to higher scales $\rightsquigarrow q\bar{q}$ pairs at low x



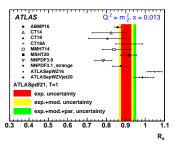
- evolution to higher scales $\rightsquigarrow q\bar{q}$ pairs at low x
- \blacktriangleright all q(x) and $\bar{q}(x)$ become similar at high scales and low x
- relative uncertainties shrink

•
$$g(x) \gg q(x)$$
 for x below 0.1


 \blacktriangleright at low scale and low x gluon known very poorly

•
$$g(x) \gg q(x)$$
 for x below 0.1

• evolution for g(x) even stronger than for q(x)


Strange quarks: recent results

ratio of strange to non-strange sea quarks:

$$R_s(x) = \frac{s(x) + \bar{s}(x)}{\bar{u}(x) + \bar{d}(x)}$$

ATLAS, arXiv:2112.11266

