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Discovery of x rays by Wilhelm Rontgen in 1895

Mechanism of image formation:

» X-ray photoelectric effect, which
depends on the atomic species
encountered by the x rays

* Photoelectrons are produced, but
aed [ i they get stuck in the tissue




Dominant x-ray—atom interaction process: photoabsorption
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Fig. 3-1. Total photon cross section “tt in carbon, as a function of energy,
showing the contributions of different processes. T, atomic photo-effect (electron

ejection, photon absorption); “cck, coherent scat-tering (Rayleigh
scattering—atom neither ionized nor excited); “ech, incoherent scattering
(Comp- ton scattering off an electron); *», pair production, nuclear field; *¢,
pair production, electron field; Teh, photonuclear absorption (nuclear

absorption, usually followed by emission of a neutron or other particle). (From
Ref. 3, figure courtesy of J. H. Hubbell.)
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Figure 8.14 The monochromatized AlKa carbon ls XPS spectrum of ethyltri-
fluoroacetate showing the chemical shifts relative to an ionization energy of
291.2 eV. (Reproduced, with permission, from Gelius, U., Basilier, E., Svensson,
S., Bergmark, T., and Siegbahn, K., J Electron Spectrosc., 2, 405, 1974)
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X-ray crystallography: principle
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nonrelativistic QED and
many-body theory
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A brief history of x-ray intensity
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Making molecular movies: a new tool for femtochemistry

Molecular beam

1. Laser flash

triggers reaction 2. Laser flash takes

instantaneous "snapshots"




Single-shot structure determination of biomolecules

Particle injection

X-ray pulse

Neutze et al., Nature 406, 752 (2000).
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The first atomic-physics experiments at LCLS (fall 2009)

Complete stripping of neon in a single x-ray pulse (removal of
all 10 electrons)
[L. Young et al., Nature 466, 56 (2010)]

Double-core-hole formation in neon by beating the Auger decay
of 1s-ionized Ne'* (decay lifetime of 2.4 fs)
[L. Young et al., Nature 466, 56 (2010)]

Nonsequential two-photon ionization of Ne®*
[G. Doumy et al., Phys. Rev. Lett. 106, 083002 (2011)]

Modification of Auger line profile in neon via x-ray-driven Rabi
oscillations

[E. P. Kanter et al., Phys. Rev. Lett. 107, 233001 (2011)]




Neon charge states as a function of the photon energy
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Counterintuitive impact of pulse duration

photon energy 2 keV, pulse energy 2 mJ
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Observation of double-core-hole formation

photon energy 1050 eV, pulse energy 2 mJ, nominal pulse duration 80 fs, electrons
emitted perpendicular to x-ray polarization axis
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Sang-Kil Son

XATOM:

an integrated toolkit for
X-ray atomic physics at
high intensity

— ab initio calculation of atomic parameters (subshell
photoionization cross sections, electronic decay rates, x-ray
scattering cross sections) for arbitrary electronic configurations

— description of electronic population dynamics via numerical
solution of system of coupled rate equations (one rate equation per
electronic configuration)
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Number of active configurations = nhumber of coupled

rate equations

® (. 1s?2s?2p?

- 27 configurations

® Ne: 1s°2s? 2p°

— 63 configurations

® Xe: [1s? 2s5? 2p°] 352 3p° 3d*° 452 4p° 4d1° 552 5p°

- 1,120,581 configurations
(excluding ionization from the K and L shells)
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Comparison between experiment and theory for Xe at 2 keV
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Relativistic and resonant effects in the ionization
of heavy atoms by ultra-intense hard x rays

Xe at an x-ray peak
Intensity exceeding
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Dramatic increase in the number of coupled rate equations

® Nonrelativistic, no resonances

- 23,532,201 configurations

® Relativistic, no resonances

- 5,023,265,625 configurations

e Relativistic, including resonances (n__ =30,1 =7)

- 2.6 X 10° configurations

(lonization from the K shell is excluded in all three cases listed)
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Zoltan Jurek Sang-Kil Son

— ab-initio calculation of atomic parameters (subshell photoionization
Cross sections, electronic decay rates, x-ray scattering cross sections) for
arbitrary electronic configurations — uses XATOM

— description of electronic population dynamics via Monte Carlo

— classical molecular dynamics for nuclei and ionized electrons




XMDYN is part of a start-to-end simulation framework for

single-particle imaging at the European XFEL
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C. H. Yoon et al., Sci. Rep. 6, 24791 (2016).

C. Fortmann-Grote et al., IUCrJ 4, 560 (2017).




X-ray pump / x-ray probe study of C_

Collaboration with Nora Berrah, Jon Marangos, et al.
Experiment carried out at LCLS
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Relative weight of the parent of the final C'*, C?*, C3*, C#
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Appearance of the neutral and singly charged atomic fragments, as a function

of the number of absorbed x-ray photons
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The dashed line corresponds to the average response of the fullerene to the pump
pulse when the molecule is in the center of the focus.

N. Berrah et al., Nature Phys. 15, 1279-1283 (2019).




Simulated real-time evolution of the volume-integrated

yield using the pump pulse only
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N. Berrah et al., Nature Phys. 15, 1279-1283 (2019).



Evolution of the molecular structure (pump only)
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Conclusions

» Radiation damage at high x-ray intensity of
relevance to applications of XFELSs.

» Very high charge states are formed as a
consequence of the sequential absorption of
multiple photons, combined with electronic decay
cascades associated with hole formation in deep
iInner shells.

» |mpact of relativistic and resonant effects.

* At x-ray intensities used for SFX (serial
femtosecond x-ray crystallography), there is hardly
any atomic displacement during the x-ray pulse.
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