HELMHOLTZ RESEARCH FOR GRAND CHALLENGES

Predictive Beam Steering and Machine Learning at JETi200

Alexander Sävert

GeV electron bunches

-2 mrad 0 2 · -2 mrad 0 2-0.0 2.5 - 2.50.0 2.5-2.5 0.0 2.5 mrad mrad mrad

Electron bunch profile

Electron bunch spectrum

pointing fluctuations on same order as divergence

GeV beams with ultra low beam divergence < 0.5 mrad²

www.hi-jena.de

Bayesian Optimizing of LWFA

Laserparameters for optimization

- Energy
- Focussing (shape, position)
- pulse duration (chirp)
- temporal intensity contrast

Experimental parameters for optimization

- target gas
- target length
- focus position

Pulse characterization @ full power

Pulse characterization @ full power

Pulse characterization @ full power

Optimizing LWFA

Laserparameters for optimization

- Energy
- Focussing (shape, position)
- pulse duration (chirp)
- temporal intensity contrast

Experimental parameters for optimization

- target gas
- gas pressure
- gas doping
- target length
- focus position

HI Jena extension

HI JENA Helmholtz Institute Jena

www.hi-jena.de

High intensity lasers @ HI Jena & IOQ (2023)

JETI ONE ATHENA

JETi200

POLARIS

Wavelength: Energy on target: Pulse duration: Peak power: Repetition rate:

0,8-7 μm 0,5 mJ few cycle 1 kHz Wavelength: Energy on target: Pulse duration: Peak power: Repetition rate:

800 nm 5 J 17 fs 300 TW 5 Hz Wavelength: Energy on target: Pulse duration: Peak power: Repetition rate: 1030 nm 16 J (54 J) 100 fs 160 TW 1/50 Hz

Goal: synchronisation of all beams in space (<1 μrad (rms)) and time (<20 fs (rms)) HI JENA

www.hi-jena.de

State of the art synchronisation < 20 fs (2025)

Laser pointing reduction: Cryo cooled power amplifier

- 100 W pumping power @532 nm
- target temperature 90 K to reduce the thermal lens of the Ti:Sapphire crystal

- old: Helium expander cryo head ARS DE-110
- new: Cryo Spectra K100150

Beam stabilization (short term drift)

- Short term jitter > 30 Hz
- Long term drift only depends on environment (temperature, humidity, air pressure)

HI JENA Helmholtz Institute Jena

Beam pointing prediction and active beam stabilization for < 1 μrad

Challenge:

Low-repetition rate/ single shot experiments with small pointing jitter

For kHz-laser systems straight forward, small, *continuous* beams, fast piezo mirrors.

For reasonable stable (drift only) systems, e.g 10 Hz JETi200 CPA1 XPW frontend

- Pilot beam with sufficient high repetition rate and power
- Same beam properties as main beam
- Detection within the beam line, close to the experiment
- typically leaking light through a mirror used for online diagnostics

HI JENA Helmholtz Institute Jena

www.hi-jena.de

Active beam stabilization with cryo cooling

New Cryo head (installation summer 2022)

- no vibrations anymore

Installation of new CRYO cooler

Beam pointing at full power is sufficient to hit a 1 μ m sphere with a 2 μ m diameter focal spot reliable.

www.hi-jena.de

LWFA experiments beam pointing

emittance campaign

- LWFA with ionization injection (95% helium, 5% nitrogen)
- super sonic gas jet

horizontal direction

old CRYO jitter:

new CRYO jitter:

vertical direction

old CRYO jitter:

new CRYO jitter:

Jitter for electron bunches is mrad while for the laser beam is μ rad.

Technical implementation @ JETi200

JETi200 – Double CPA system

- use residual oscillator beam after pulse picking (front end 10 Hz): P_{pilot} > 200 mW
- beam is coupled in before the multi pass amplifier in CPA2 via thin film polarizer no additional stretcher necessary, pulse duration > 6 ps due to dispersion
- same beam path in the laser chain and uses all the expansion optics
- Fast 3" piezo mirror after the last amplifier
- Detection with 4 quadrant diode (up to 10 kHz) after 99:1 beam splitter in beamline
 - Pilot beam with sufficient high repetition rate and power
 - Same beam properties as main beam
 - Detection within the beam line, close to the experiment
 - typically leaking light through a mirror used for online diagnostics

Helmholtz Institute Jena

www.hi-jena.de

Details

- Disturbances (10 ms) same order as piezo mirror frequency
- 4Q diode needs to be blocked during high power shots

No active readjustment possible, hence, beam prediction is necessary !

Using Long Short-Term Memory neural networks to predict time series up to 200 ms into the future.

www.hi-jena.de

Looking 200 ms into the future

- JETi200 operates at nominal 5 Hz
- from pulse picking to target ca. 700 μs -> would allow us to directly pick the right pulse when pilot beam is in the right position
- many experiments require a pre-trigger e.g. for gas cell valves 40 ms before
- use time scale of the pre-trigger for beam prediction

Details

Figure 2.1: Schematic view of the experimental setup

HI JENA Helmholtz Institute Jena

www.hi-jena.de

Response time piezo mirror mount

Figure 2.1: Schematic view of the experimental setup

3" Piezo mirror mount resonance frequency: ~ 1.7 kHz

www.hi-jena.de

Response time 4QD shutter

Figure 2.1: Schematic view of the experimental setup

shutter speed: 5 ms

www.hi-jena.de

Methods for prediction

has to be fast enough (analysis + mirror motion+ spare time) < 200 ms

Machine learning / Neural network	Autocorrelation search
"real" prediction	searching for similar signals from a database
	fast but not accurate
input layer hidden layer 1 hidden layer 2 output layer	

Frequency analysis: 20 s @ 1 kHz

characteristic frequencies: 48.9 Hz, 32.2 Hz, 24.6 Hz, 41.5 Hz, 36.8 Hz, 115 Hz

www.hi-jena.de

25

Helmholtz Institute Jena

FNA

Frequency analysis evolution: 0 – 4 s

characteristic frequencies: 48.9 Hz, 32.2 Hz, 24.6 Hz, 41.5 Hz, 36.8 Hz, 115 Hz HI JENA

www.hi-jena.de

Frequency analysis evolution: 4 – 8 s

characteristic frequencies: 48.9 Hz, 32.2 Hz, 24.6 Hz, 41.5 Hz, 36.8 Hz, 115 Hz HI JENA

www.hi-jena.de

Frequency analysis evolution: 8 – 12 s

characteristic frequencies: 48.9 Hz, 32.2 Hz, 24.6 Hz, 41.5 Hz, 36.8 Hz, 115 Hz HI JENA

.

www.hi-jena.de

Frequency analysis evolution: 12 – 16 s

characteristic frequencies: 48.9 Hz, 32.2 Hz, 24.6 Hz, 41.5 Hz, 36.8 Hz, 115 Hz HI JENA

www.hi-jena.de

Frequency analysis evolution: 16 – 20 s

characteristic frequencies: 48.9 Hz, 32.2 Hz, 24.6 Hz, 41.5 Hz, 36.8 Hz, 115 Hz HI JENA

www.hi-jena.de

Key parameter: training data @ 1 kHz

- Using tensorflow libraries in python
- multiple sets with different lengths (typical 1000-20000 points)

HI JENA Helmholtz Institute Jena

Sampling resolution 1 kHz

- 2000 pts for 200 pts prediction (first 2 s of measurement)
- comparison @ 6s

HI JENA Helmholtz Institute Jena

Sampling resolution 1 kHz

- 10000 pts for 200 pts prediction (first 10 s of measurement)
- comparison @ 6s
- longer sets didn't contribute to better predictions

HI JENA Helmholtz Institute Jena

Sampling resolution 5 kHz

- 50000 pts for 200 pts prediction (first 10 s of measurement)
- comparison @ 6s (within trainings set)

We can only predict what has happened at some point in the past. (slamming doors, ...)

HI JENA Helmholtz Institute Jena

Beam pointing prediction and active beam stabilization

First tests (Labview, python with tensor flow/ pytorch) with recorded trainings data and compare to recorded test data

Good news: - It works! up to 2 times RMS-jitter reduction (best case).

- Worst case: no improvement
- Calculation time < prediction time

But: seems not to be long term stable, reinforced learning necessary Anyway: Installation of hardware and tests later this year .

CONTROL SYSTEM neccessary!

www.hi-jena.de