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Laser-plasma physics has developed rapidly over the past few decades as lasers have become both
more powerful and more widely available. Early experimental and numerical research in this field
was dominated by single-shot experiments with limited parameter exploration. However, recent
technological improvements make it possible to gather data for hundreds or thousands of di↵erent
settings in both experiments and simulations. This has sparked interest in using advanced techniques
from mathematics, statistics and computer science to deal with, and benefit from, big data. At the
same time, sophisticated modeling techniques also provide new ways for researchers to deal e↵ectively
with situation where still only sparse data are available. This paper aims to present an overview
of relevant machine learning methods with focus on applicability to laser-plasma physics and its
important sub-fields of laser-plasma acceleration and inertial confinement fusion.
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• Held 1st online workshop on control systems 
and machine learning in January 2022  
(150+ registered participants)

• Special issue in High-Power Laser Science and 
Engineering.

• Pre-print of review paper (30+ pages) recently 
published on arXiv (accepted in High-Power 
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Part 1  
Multi-objective, multi-fidelity 
Bayesian optimization



Bayesian optimization
Sequential surrogate-based optimization

1. Build model

2. Choose new point

3. Build new model

4. Choose new point

5. …
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Gaussian process regression
Modeling functions via correlations

• Non-parametric method: Predicts function values 
based on observed data without a predetermined model.

• Covariance function/Kernel: Defines the relationship 
between points, capturing their correlations.

• Probabilistic description: Provides a full description of 
the function, including mean and uncertainty.



Gaussian process regression
Modeling functions via correlations
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Bayesian optimization
First experimental results in laser-plasma acceleration

• R. J. Shalloo et al. Automation and control of laser wakefield accelerators using Bayesian optimization, Nature Communications 11, 6355 (2020)



  
Multi-objective, multi-fidelity 
Bayesian optimization



Multi-objective optimization
The dinner problem
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Multi-objective optimization
The dinner problem

„Dominated“ 
points

„Non-dominated“ 

points



Multi-objective optimization
The dinner problem

Pareto front 
(trade-off curve)

In multi-objective optimization we have multiple (competing) goals with different trade-offs.

#



Multi-objective optimization
The dinner problem

In multi-objective optimization we have multiple (competing) goals with different trade-offs.

Hypervolume  
improvement

Pareto front 
(trade-off curve)

# ∪ y

HVI(#, y) = HV(# ∪ y) − HV(#)



Multi-fidelity optimization
The dinner problem

In multi-fidelity optimization we have different confidence in measurements.  
 

Pareto front 
(trade-off curve)

Really 
dominated?



Multi-fidelity optimization
The dinner problem

size ∝ # reviews

In multi-fidelity optimization we have different confidence in measurements,  
thus spanning another dimension that represents how much we trust the point.



Multi-objective, multi-fidelity 
Bayesian optimization 
applied to laser-plasma acceleration



Multi-objective multi-fidelity optimization
Optimization of electron beam properties (FBPIC simulations)

• We want to optimize three electron beam 
parameters:

• Charge  (total charge, charge within FWHM, etc.)

• Bandwidth (standard deviation , median absolute 

deviation , etc.)

• Distance to a target energy 

(using mean energy, median energy, peak energy, etc.)

Q
σE

EMAD

|Etarget − E |



Multi-objective multi-fidelity optimization
Optimization of electron beam properties (FBPIC simulations)

• We want to optimize three electron beam 
parameters:

• Charge  (total charge, charge within FWHM, etc.)

• Bandwidth (standard deviation , median absolute 

deviation , etc.)

• Distance to a target energy 

(using mean energy, median energy, peak energy, etc.)

Q
σE

EMAD

|Etarget − E |

• We can use the simulation resolution as our 
fidelity, i.e. we trust a high-resolution simulation 
more than a low-resolution simulation (including 

low-res gives one order of magnitude speed-up)
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|ΔẼ | ⋅ EMAD

Q3
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• Different metrics

• Different weights

• Choosing different metrics or weights for each 
objective changes the outcome in an a priori 
unknown way! • Irshad, F., Karsch, S., & Döpp, A. Multi-objective and multi-fidelity Bayesian optimization of 

laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)



Multi-objective multi-fidelity optimization
Optimization of electron beam properties (FBPIC simulations)

1. Irshad, F., Karsch, S., & Döpp, A. EHVI for simultaneous multi-objective and multi-fidelity optimization. arXiv preprint arXiv:2112.13901 (2021)
2. Irshad, F., Karsch, S., & Döpp, A. Multi-objective and multi-fidelity Bayesian optimization of laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)
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Multi-objective multi-fidelity optimization
Optimization of electron beam properties (FBPIC simulations)

• Once the Pareto-optimal solutions are identified, 
we can choose from them what kind of beam we 
want.
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Ē

Ẽ
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• We can also use the model’s data to change 
parameters a posteriori, e.g. to tune the beam 
energy.

• Irshad, F., Karsch, S., & Döpp, A. Multi-objective and multi-fidelity Bayesian optimization of 
laser-plasma acceleration. Phys. Rev. Research 5, 013063 (2023)



Multi-objective multi-fidelity optimization
Optimization of electron beam properties (Experiment)
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• N. Weiße et al. Tango Controls and Data Pipeline for Petawatt Laser 
Experiments, HPLSE, 10.1017/hpl.2023.17 (2023)

• F. Irshad, et al. Pareto Optimization of a Laser Wakefield 
Accelerator (under review)



Multi-objective multi-fidelity optimization
Optimization of electron beam properties (Experiment)

• Once the Pareto-optimal solutions are identified, 
we can choose from them what kind of beam we 
want.

• We observe that many of the Pareto-optimal 
solutions yield the same laser-to-beam 
efficiency.

• N. Weiße et al. Tango Controls and Data Pipeline for Petawatt Laser 
Experiments, HPLSE, 10.1017/hpl.2023.17 (2023)

• F. Irshad, et al. Pareto Optimization of a Laser Wakefield 
Accelerator (under review)



Multi-objective multi-fidelity optimization
Optimization of electron beam properties (Experiment)

• Once the Pareto-optimal solutions are identified, 
we can choose from them what kind of beam we 
want.

• We can select and exploit one particular 
solution within the Pareto-optimal solutions by 
fitting  

such that it is maximized for the selected point.

Oselect = a1Q + a2σE + a3 |Etarget − E |

• N. Weiße et al. Tango Controls and Data Pipeline for Petawatt Laser 
Experiments, HPLSE, 10.1017/hpl.2023.17 (2023)

• F. Irshad, et al. Pareto Optimization of a Laser Wakefield 
Accelerator (under review)



Part 2  
Inverse problems



Inverse Problems
Determining cause from effect

f( ) =

= f −1( )

x
y

Cause and Effect: Inverse problems involve determining the cause (e.g. 3D structure) from the observed effect (e.g. 2D projections).



Inverse Problems
Determining cause from effect

f( ) =

= f −1( )

x
y

Cause and Effect: Inverse problems involve determining the cause (e.g. 3D structure) from the observed effect (e.g. 2D projections).

Ill-posed Problems: Inverse problems often lack a unique 
solution or are sensitive to input data.
Use Regularization to stabilize the solution by introducing 
additional information or assumptions.



Inverse Problems
An example

f( ) =

= f −1( )

x
yI(x, y, t)

3-D intensity distribution in time  

Knowledge necessary for 
• Highest peak-intensity
• Accurate simulations
• Spatio-temporal shaping 

(flying focus etc.)
• …



Ultra-intense laser characterization

I(x, y, t)

3-D intensity distribution in time  
 

n = nx × ny × nλ ∼ 1000 × 1000 × 100 = 108 voxels

100 million parameters: Need many measurements

Common solution: Fourier transform spectroscopy (INSIGHT, 
TERMITES) with >1000 2D measurements at 1 MP



Ultra-intense laser characterization

I(x, y, t)

3-D intensity distribution in time  
 

n = nx × ny × nλ ∼ 1000 × 1000 × 100 = 108 voxels

100 million parameters: Need many measurements

Common solution: Fourier transform spectroscopy (INSIGHT, 
TERMITES) with >1000 2D measurements at 1 MP

But are voxels really a good base function choice?



Ultra-intense laser characterization
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

This is the important part,  
describing the focused intensity!



Ultra-intense laser characterization
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

We know there is a very good base to describe phase: 
Zernike polynomials

Zm
n (ρ, φ) = Rm

n (ρ) cos(m φ)
Z−m

n (ρ, φ) = Rm
n (ρ) sin(m φ),



Ultra-intense laser characterization
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

We also know there is a very good way to describe 
spectral phase: Taylor expansion (group delay, group delay dispersion, etc.)
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Ultra-intense laser characterization
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

Can describe the hyperspectral wavefront using 
Zernike-modes and Taylor-expansion in frequency



Ultra-intense laser characterization
Multi-spectral, modal reconstruction

I(x, y, t) = ∥ℱ [ I(x, y, ω) ⋅ exp (iΦ(x, y, ω))] ∥2

Can describe the hyperspectral wavefront using 
Zernike-modes and Taylor-expansion in frequency

Instead of > 1,000,000 voxels we only need to 
reconstruct dominant mode coefficients

Allows us to retrieve spatio-temporal couplings within 
a few measurements

Φ(x, y, ω) = ∑
m,n,i

ai
m,n(ω − ω0)iZm

n (x, y)



Simple, robust device

Ultra-intense laser characterization
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023)



Translate into an inverse problem

This is for a simple 2x2 lenslet SH detector

Ultra-intense laser characterization
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023)
•



Translate into an inverse problem
Penrose 
pseudo-
inverse 
calculation 
(basically 
realtime)

Ultra-intense laser characterization
FALCON - Fast Acquisition of Laser Couplings using Narrowband Filters

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings using modal multi-spectral wavefront reconstruction, Opt. Express 31, 19733-19745 (2023)
•



760 nm 780 nm

820 nm 840 nm

Ultra-intense laser characterization
Measurement of STCs of the ATLAS petawatt laser

• N. Weiße, J. Esslinger et al. Measuring spatial-temporal couplings 
using modal multi-spectral wavefront reconstruction, Opt. Express 
31, 19733-19745 (2023)

• Full measurement takes ~ 1 minute  
(9 wavelengths, 5 shots each)

• Measurement shows couplings in ATLAS are  
< λ/10 between 780 - 820 nm

• FALCON measurement now routinely 
performed every day after focus measurements



Ultra-intense laser characterization
Least-squares in Zernike-Taylor basis

Ax = y arg min
x

{∥Ax − y∥2}

arg min
x̃

{∥AΨx̃ − y∥2}

Minimize

Transform  to (truncated) Zernike-Taylor basisΨ

1000x1000x100 numbersnx × xy × nω ∼

Leading coefficients (<1000)
Much more robust reconstruction!

1. A. Döpp et al. Data-driven Science and Machine Learning Methods in Laser-Plasma Physics, arXiv:2212.00026 (2022)



Ax = y arg min
x

{∥Ax − y∥2}

arg min
x̃

{∥AΨx̃ − y∥2 + ∥x̃∥1}

Minimize

Few coefficients as possible

Transform to some sparse basis  
(e.g. wavelet, PCA, etc.)

Ultra-intense laser characterization
Compressed sensing

1. A. Döpp et al. Data-driven Science and Machine Learning Methods in Laser-Plasma Physics, arXiv:2212.00026 (2022)

1000x1000x100 numbersnx × xy × nω ∼



Ax = y arg min
x

{∥Ax − y∥2}

arg min
x̃

{∥AΨx̃ − y∥2 + -(y)}

Minimize

Learnt regularization
(Residual estimate)

Ultra-intense laser characterization
Deep compressed sensing

1. A. Döpp et al. Data-driven Science and Machine Learning Methods in Laser-Plasma Physics, arXiv:2212.00026 (2022)

1000x1000x100 numbersnx × xy × nω ∼

Transform to some sparse basis  
(e.g. wavelet, PCA, etc.)



Ax = y
̂x = arg min

x̃
{∥AΨx̃ − y∥2 + -(y)}

Ultra-intense laser characterization
Deep compressed sensing

1. S. Howard et al. Hyperspectral Compressive Wavefront Sensing, High Power Laser Science and Engineering, 2023, 11(3):32 



Ultra-intense laser characterization
Deep compressed algorithm unrolling

1. S. Howard et al. Hyperspectral Compressive Wavefront Sensing, High Power Laser Science and Engineering, 2023, 11(3):32 



Ultra-intense laser characterization
Deep compressed algorithm unrolling

1. S. Howard et al. Hyperspectral Compressive Wavefront Sensing, High Power Laser Science and Engineering, 2023, 11(3):32 



Conclusions and Outlook
Deep compressed algorithm unrolling

• Machine learning is quickly advancing in laser-
plasma physics community

• Physics-driven developments can improve 
essential building blocks of machine-learning

• Presented new Bayesian optimization 
approaches using multiple objectives and 
fidelities 

• Presented new approaches to measuring spatio-
temporal couplings; single-shot diagnostic under 
development

• Many other applications in development, e.g. 
object detection, etc.
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