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ML-related events

Creation of the Collaboration on 
Reinforcement Learning for 
Autonomous Accelerators (RL4AA)
§ Kick-off with workshop organized at KIT
§ Expert lectures on reinforcement learning
§ Real application to accelerator tutorials
§ Advanced discussion sessions

https://indico.scc.kit.edu/event/3280/overview
https://github.com/RL4AA/RL4AA23
https://rl4aa.github.io/

à Proceedings to be published soon
à Next year’s workshop by Uni Salzburg (5-7 Feb. 2024)

AI HERO Hackathon on Energy Efficient AI
§ Training machine learning models on GPU clusters costs 

energy
§ With the rise of larger and larger models, training should not 

be indiscriminate
§ Many strategies: use pre-trained models, mixed precision, 

simplification of input, simplest model, smart hyperparameter 
tuning, train fewer epochs, compile your code, NVIDIA tools 
for fast inference, no idle cores, etc…

https://indico.scc.kit.edu/event/3280/overview
https://github.com/RL4AA/RL4AA23
https://rl4aa.github.io/
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First RL algorithm online training and running 
on hardware in accelerators

Reinforcement Learning
L. Scomparin
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First RL algorithm online training and running 
on hardware in accelerators

Reinforcement Learning
L. Scomparin
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First RL algorithm online training and running 
on hardware in accelerators

Reinforcement Learning
§ Agent: Vanilla PPO from Stable Baselines 3
§ Actor & critic architecture: 8-16-1
§ Reward: metric of the beam position (low as possible)
§ Observation: last 8 BPM samples
§ Strategy:

1. Agent acts during 2000 turns (0.74 ms) 
2. Agent stops and is re-trained in a CPU (~2 s)
3. New weights are sent to Versal board and agent starts again

L. Scomparin

Achieves (sometimes 
surpassing) 
performance of FIR 
filter control 
(commercial solution)

Damping improves 
with experience: the 
system is learning!external kick

§ NNs coded in Versal AIE
§ Only forwad pass
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First RL algorithm online training and running 
on hardware in accelerators

Reinforcement Learning
L. Scomparin
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First RL algorithm online training and running 
on hardware in accelerators

Reinforcement Learning
L. Scomparin

Extraction septum on
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First detailed comparison of BO and RL in a 
real accelerator

Reinforcement Learning

Bayesian Optimization

J. Kaiser, C. Xu

https://arxiv.org/abs/2306.03739

“Machine Learning Toward 
Autonomous Accelerators”

§ Task: focus and position the electron beam 
§ Actuators: 3 quadrupole magnets + 2 corrector magnets
§ Observation: beam image on the diagnostic screen

https://arxiv.org/abs/2306.03739
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First detailed comparison of BO and RL in a 
real accelerator

Reinforcement Learning

Bayesian Optimization

0

1

S
te

er
er

s

(a)

RLO

CV CH

°1

0

1

Q
ua

dr
up

ol
es (c) Q1 Q2 Q3

°2

0

2

µ

(e) µx µy

0 10 20 30 40 50
Step

0.0

0.5

1.0

1.5

æ

(g) æx æy

(b)

BO

(d)

(f)

0 10 20 30 40 50 60 70
Step

(h)

°2.5 0.0 2.5
x (mm)

°2

0

2

y
(m

m
)

Before

(i)

°2.5 0.0 2.5
x (mm)

After

°2.5 0.0 2.5
x (mm)

Before

(j)

°2.5 0.0 2.5
x (mm)

After

N
or

m
al

is
ed

ac
tu

at
or

se
tti

ng
B

ea
m

pa
ra

m
et

er
s

(m
m

)

RL optimization outperforms BO

J. Kaiser, C. Xu
Er

ro
r m

et
ric

 (m
m

)



Andrea Santamaria Garcia IBPT, KIT30.06.2310

First detailed comparison of BO and RL in a 
real accelerator
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Bayesian optimization algorithm transferred to EuXFEL

Bayesian Optimization
C. Xu

Time to inject to KARA cut in half with automated 
tuning by BO algorithm

Emitted THz radiation at FLUTE optimized with 
parallel BO in simulation

Transfer of algorithm to EuXFEL to tune SASE 
emission

https://doi.org/10.1103/PhysRevAccelBeams.26.034601

https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS023

https://www.ipac23.org/preproc/pdf/THPL028.pdf

Code available at: https://github.com/cr-xu/bo-4-euxfel
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GP model can be used to 
visualize the sensitivity of 

actuators with respect to an 
objective and assist operators

https://doi.org/10.1103/PhysRevAccelBeams.26.034601
https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS023
https://www.ipac23.org/preproc/pdf/THPL028.pdf
https://github.com/cr-xu/bo-4-euxfel
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Lattice agnostic RL à Generalizable RL

Reinforcement Learning

C. Xu

§ Goal: train a generalizable RL agent for transverse control

§ Method (domain randomization DR): 
§ randomize magnet positions in training
§ keep QQQCC order

à Agent can’t memorize magnet settings

ARES

FLUTE

Universal agent that 
can be deployed at 
similar but different 

accelerators

C.Xu, IPAC23-THPL029

https://www.ipac23.org/preproc/pdf/THPL029.pdf
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Lattice agnostic RL à Generalizable RL

Reinforcement Learning

C. Xu

Used during training, with 
randomized positions but 

following order (=DR)

Test lattices

Average of 100 tasks, max. 50 steps
Reduction of 

performance when used 
in different lattices

Fine tuning (FT) à re-training 
with new lattice only 2% of the 

original training samples

C.Xu, IPAC23-THPL029

Ch = Cheetah, tensorized optics simulation
Oc = OCELOT (with space charge)

https://www.ipac23.org/preproc/pdf/THPL029.pdf
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Active learning to design vFFAs
A. Oeftiger, A. Santamaria Garcia, S. Hirländer, J.-B. Lagrange

Why a data-driven characterization study?
§ Lattice with strong transverse coupling, nonplanar orbits
§ Magnetic exponential fields = zero chroma + strong nonlinearity
 Bx,y,z  ∝  B0 exp(m z)
§ Many lattice configurations do not yield closed orbits!
à Betatron tune adjustment is crucial to avoid resonances (space charge)
à Lattice design for maximum dynamic aperture has been
trial-and-error in first design studies (difficult)

Now explore lattice parameter space efficiently, guided 
by active learning = iterative supervised learning

Zero momentum compaction
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Active learning to design vFFAs
A. Oeftiger, A. Santamaria Garcia, S. Hirländer, J.-B. Lagrange

DATA COLLECTION

5D lattice parameters

Dynamic aperture 
(u, v)

CLASSIFIER
Predicts existence of closed orbits for 
a given a 5D lattice, with probability

RANDOM SAMPLING
First iteration

Closed orbit calculation

Closed orbit Transfer matrix

Dynamic aperture calculation

Decoupled 
transfer matrix

FIXFIELD

yesno

Exists? Stable?

yesno

in decoupled space

Finding the domain of valid closed orbits

§ Start from 20k uniformly distributed random samples (2% closed orbits)
§ Iterative training and rejection sampling give up to 85% closed orbits per 

iteration
§ Gather 170k simulated lattices with overall >25% closed orbits

5D lattice 
parameter space:
(B0f, B0d, m, xs, tf)

Random Forest Classification captures 
complex shape of domain very well

More simulations were launched in 
closed orbit dense regions
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Active learning to design vFFAs
A. Oeftiger, A. Santamaria Garcia, S. Hirländer, J.-B. Lagrange

5D lattice parameters Dynamic aperture 
prediction

CLASSIFIER
We select lattices with 90%

probability of having a closed orbit

RANDOM SAMPLING

NN ENSEMBLE

ACTIVE LEARNING

First training with 
previously collected data with uncertainty quantification

FIXFIELD
Dynamic aperture 

calculation

5D lattice parameters
Selection of 25% most 

uncertain lattices

Dynamic aperture
for training

Training to predict dynamic aperture

Future goal: 
• Input: tunes
• Output: lattices with maximum dynamic aperture

Red = top 10 lattices (up to 6.5cm DA)

Active learning provided overall 200k lattice 
configurations with 25% closed orbits and well 

resolved high-DA regions:
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The Spatial-Light-Modulator Project at FLUTE

17

Test setup for the SLM project in the FLUTE cleanroom

Evolve last year’s experiment by ...
1. Switching to the Ti:Sa 800 nm photoinjector laser system
2. Including a compressor in the optical path
3. Mapping the camera intensity directly to the phase 

modulation via a deep neural network

S. Kötter

Goal: control the electron phase space in a linear 
accelerator

§ Can be achieved by shaping the photoinjector laser pulse
§ Modulate pulse via a spatial light modulator (SLM)
§ Find the phase modulation that results in a target pulse shape
§ Current status: test setup for transverse modulation

C. Xu et al. WEPAB289, IPAC21

Laser pulse shaping with Spatial Light Modulators 
and convolutional neural networks

Screen Image

w/o CNN

CNN

optical 
propagation

Hologram

https://accelconf.web.cern.ch/ipac2021/papers/wepab289.pdf
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Neural Network Architecture
Output:
l Zernike Amplitudes
l Size: 14
l Normalized to [0, 1]

Head: 
l Conv2D(ReLU)
l 3 channels

Body: 
l EfficientNetV1B1
l 14 classes
l No pretrained weights

l Is deep. Shallow networks did not work at all!
l Currently works with EfficientNetV1 but ResNet50 also works

Input:
l Camera images
l Size: 100x100
l Interval [0, 1]

Tail: 
l 3x Dense(ReLU)
l Sizes: 128, 64, 32
l 1x Dense(Sigmoid)
l Size: 14

[1] V. Krishna Adithya et al., EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection, Journal of Imaging vol 7 (2021).

[1]

The Spatial-Light-Modulator Project at FLUTE
S. Kötter
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Training
l Trained network on 30,000 (input, output) tuples 
l Each tuple consists of ...

1. a random superpositions of the first 14 Zernike polynomials (reduces degrees of freedom)
2. the corresponding camera image

The first 14 Zernike polynomials (except 0th order)[1]Training loss
[1] Nschloe for wikipedia, cropped, license: https://creativecommons.org/licenses/by-sa/4.0/deed.en (2020).

The Spatial-Light-Modulator Project at FLUTE
S. Kötter

https://creativecommons.org/licenses/by-sa/4.0/deed.en
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Test data:
l Predicted phase patterns match 

originals reasonably well
l Inference works reasonably well!

Experimental application:
l Seems to work in general
l But is probably not useful yet

Conclusion: works but is not useful yet!
Outlook: improve experimental setup and possibly separate neural network!

The Spatial-Light-Modulator Project at FLUTE
S. Kötter

Preliminary results
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andrea.santamaria@kit.edu
https://twitter.com/ansantam
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam

Dr. Andrea Santamaria Garcia
AI4Accelerators team leader

Thank you for
your attention!

What questions do you
have for me?

mailto:andrea.santamaria@kit.edu
https://twitter.com/ansantam
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam

