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ML-related events

Creation of the Collaboration on
Reinforcement Learning for
Autonomous Accelerators (RL4AA)

= Kick-off with workshop organized at KIT

= Expert lectures on reinforcement learning
= Real application to accelerator tutorials

= Advanced discussion sessions

- Proceedings to be published soon
- Next year’s workshop by Uni Salzburg (5-7 Feb. 2024)

https://indico.scc.kit.edu/event/3280/overview

https://github.com/RL4AA/RL4AA23
https://rl4aa.qgithub.io/
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Al HERO Hackathon on Energy Efficient Al

= Training machine learning models on GPU clusters costs

energy

= With the rise of larger and larger models, training should not

be indiscriminate

= Many strategies: use pre-trained models, mixed precision,
simplification of input, simplest model, smart hyperparameter
tuning, train fewer epochs, compile your code, NVIDIA tools

for fast inference, no idle cores, etc...
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First RL algorithm online training and running A\‘(IT

Karlsruhe Institute of Technology

on hardware in accelerators

Goal: damp transverse excitations
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First RL algorithm online training and running
on hardware in accelerators
% | f rover
= 3 Signal to BBB amplifier

Power supply

KAPTURE ‘ ,
N,

Power supply

Y

Setup at KARA
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First RL algorithm online training and running &(IT
on hardware in accelerators
| |

= Agent: Vanilla PPO from Stable Baselines 3

= Actor & critic architecture: 8-16-1

» Reward: metric of the beam position (low as possible)
= Observation: last 8 BPM samples

= Strategy:

1. Agent acts during 2000 turns (0.74 ms)
2. Agent stops and is re-trained in a CPU (~2 s)
3. New weights are sent to Versal board and agent starts again

Karlsruhe Institute of Technology

= NNs coded in Versal AIE
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First RL algorithm online training and running &(IT
on hardware in accelerators

Step 99
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First RL algorithm online training and running &(IT
on hardware in accelerators
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First detailed comparison of BO and RL in a

real accelerator

https://arxiv.org/abs/2306.03739

[Submitted on 6 Jun 2023]

Learning to Do or Learning While Doing:
Reinforcement Learning and Bayesian
Optimisation for Online Continuous Tuning
Jan Kaiser, Chenran Xu, Annika Eichler, Andrea Santamaria Garcia,

Oliver Stein, Erik Brundermann, Willi Kuropka, Hannes Dinter, Frank
Mayet, Thomas Vinatier, Florian Burkart, Holger Schlarb

Online tuning of real-world plants is a complex optimisation problem that
continues to require manual intervention by experienced human
operators. Autonomous tuning is a rapidly expanding field of research,
where learning-based methods, such as Reinforcement Learning-trained
Optimisation (RLO) and Bayesian optimisation (BO), hold great promise for
achieving outstanding plant performance and reducing tuning times.

HELMHOLTZ

“Machine Learning Toward
Autonomous Accelerators”

30.06.23 Andrea Santamaria Garcia
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Reinforcement Learning
Bayesian Optimization

= Task: focus and position the electron beam

= Actuators: 3 quadrupole magnets + 2 corrector magnets
= Observation: beam image on the diagnostic screen
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First detailed comparison of BO and RL in a ‘ ﬂ(IT

real accelerator J Kaiser, C_ Xu Karlsruhe Institute of Technology
Reinforcement Learning
Bayesian Optimization
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First detailed comparison of BO and RL in a ‘ ﬂ(IT

re a I a c ce Ie rato r Karlsruhe Institute of Technology
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Bayesian optimization algorithm transferred to EuXFEL &(IT

Karlsruhe Institute of Technology
Bayesian Optimization
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Lattice agnostic RL > Generalizable RL

Goal: train a generalizable RL agent for transverse control

= Method (domain randomization DR):
» randomize magnet positions in training
» keep QQQCC order

- Agent can’t memorize magnet settings

S-Band RF Gun

Solenoids
/ Experimental Area 1
Jy Chicane

fa )

KIT

Karlsruhe Institute of Technology

Reinforcement Learning

C.Xu, IPAC23-THPL029

Universal agent that

can be deployed at

similar but different
accelerators
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https://www.ipac23.org/preproc/pdf/THPL029.pdf

Lattice agnostic RL > Generalizable RL

KIT

Karlsruhe Institute of Technology

Reinforcement Learning

C.Xu, IPAC23-THPL029

Average of 100 tasks, max. 50 steps
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Ch = Cheetah, tensorized optics simulation
Oc = OCELOT (with space charge)
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https://www.ipac23.org/preproc/pdf/THPL029.pdf

Active learning to design vFFAs I=== 1L A\‘(IT

A. Oeftiger, A. Santamaria Garcia, S. Hirlander, J.-B. Lagrange Karlsruhe Institute of Technology

H PARIS P T

LODRON

s IDALAB

- _ — A Sy
Why a data-driven characterization study? Facilities Council

= Lattice with strong transverse coupling, nonplanar orbits

= Magnetic exponential fields = zero chroma + strong nonlinearity
Bxy,z ¢ Bgexp(m z)
= Many lattice configurations do not yield closed orbits!
- Betatron tune adjustment is crucial to avoid resonances (space charge)

-> Lattice design for maximum dynamic aperture has been
trial-and-error in first design studies (difficult)

/ [m]

Now explore lattice parameter space efficiently, guided
by active learning = iterative supervised learning

Zero momentum compaction
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Active learning to design vFFAs

A. Oeftiger, A. Santamaria Garcia, S. Hirlander, J.-B. Lagrange

Finding the domain of valid closed orbits

DATA COLLECTION
( 1)
FIXFIELD
—)I Closed orbit calculation |
| RANDOM SAMPLING |
First it_eration
Brcccomerecene Closed orbit Transfer matrix
\4 Exists? Stable?
5D lattice parameters —> V_f_V V_I_V
v H no yes no yes =
CLASSIFIER L |
Predicts existence of closed orbits for *
a given a 5D lattice, with probability _)| Dynamic aperture calculation I
l in decoupled space
Random Forest Classification captures
complex shape of domain very well Dynamic aperture
u, v
S Cu, v) )

parameter space:
(Bof, Bog, m, Xs, t7)

= Start from 20k uniformly distributed random samples (2% closed orbits)

= lterative training and rejection sampling give up to 85% closed orbits per
iteration

=  Gather 170k simulated lattices with overall >25% closed orbits
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More simulations were launched in
closed orbit dense regions

IBPT, KIT
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Active learning to design vFFAs

A. Oeftiger, A. Santamaria Garcia, S. Hirlander, J.-B. Lagrange

Training to predict dynamic aperture

ACTIVE LEARNING

r

| RANDOM SAMPLING |

5D lattice parameters—)l NN ENSEMBLE '—) Dynamic aperture

rediction
First training with . P . P
NP previously collected data with uncertainty quantification

CLASSIFIER
We select lattices with 90% :
probability of having a closed orbit Dyna::gﬁ?a:ﬁgerture
FIXFIELD 8D lattice parameters
Dynamic aperture <€—— Selection of 25% most
calculation uncertain lattices
.

Future goal:
* Input: tunes
* Output: lattices with maximum dynamic aperture

30.06.23 Andrea Santamaria Garcia
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Karlsruhe Institute of Technology
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UNIVERSITAT I DA |_ A B
SALZBURG .

DATA ANALYTICS SALZBURG

Science and
Technology
Facilities Council

Active learning provided overall 200k lattice
configurations with 25% closed orbits and well
resolved high-DA regions:

-2.0 -15 -1.0 -0.5 .0 .
Bod/Bor Boa/Bor

0.00 0.01 0.02 0.03 0.04 0.05 0.06
Maximum u + v/2 [m] in projected bin

Red = top 10 lattices (up to 6.5cm DA)

IBPT, KIT



The Spatial-Light-Modulator Project at FLUTE ﬂ("'

Goal: control the electron phase space in a linear
accelerator

Can be achieved by shaping the photoinjector laser pulse
Modulate pulse via a spatial light modulator (SLM)

Find the phase modulation that results in a target pulse shape
Current status: test setup for transverse modulation

Evolve last year’s experiment by ...
1. Switching to the Ti:Sa 800 nm photoinjector laser system
2. Including a compressor in the optical path

3. Mapping the camera intensity directly to the phase
modulation via a deep neural network

17 6/30/23 Andrea Santamaria Garcia
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Laser pulse shaping with Spatial Light Modulators
and convolutional neural networks

Hologram Screen Image

w/o CNN

optical
propagation

CNN

C. Xu et al. WEPAB289, IPAC21

+ 3

I (a

Test setup for the SLM project in the FLUTE cleanroom
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https://accelconf.web.cern.ch/ipac2021/papers/wepab289.pdf

The Spatial-Light-Modulator Project at FLUTE QAT
m Karlsruhe Institute of Technology

Neural Network Architecture

. Is deep. Shallow networks did not work at all! Ouztz:lrmti:ke Amplitudes
« Currently works with EfficientNetV1 but ResNet50 also works . Size: 14 g
Input: « Normalized to [0, 1]
. Cameraimages
° S|Ze 100X100 Block1 Block2 Blolck:'o Blcl:ck4 Blo]ck5 Blolcks Blolck7

. Interval [0, 1] = I 1

[1]
~™ ~ ~ w w w w w wn w w n
AERER | | | [ IR
:z|z22 2 2|z 2 2 2 z 2zt z¢z¢
5 5|5 S||5| 8 ® ello|lo e o | o el o |l e
§ g/ 8 g8 8 888 8¢8 8 8¢ 8
Q22 FEPEE S == = === ==
Head: Tail:
« Conv2D(ReLU) Body: . 3x Dense(RelLU)
« 3channels . EfficientNetV1B1 . Sizes: 128, 64, 32
. 14 classes « 1x Dense(Sigmoid)
« No pretrained weights . Size: 14
[1] V. Krishna Adithya et al., EffUnet-SpaGen: An Efficient and Spatial Generative Approach to Glaucoma Detection, Journal of Imaging vol 7 (2021).
IBPT, KIT
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The Spatial-Light-Modulator Project at FLUTE QAT
m Karlsruhe Institute of Technology

Training
« Trained network on 30,000 (input, output) tuples
. Each tuple consists of ...
1. a random superpositions of the first 14 Zernike polynomials (reduces degrees of freedom)
2. the corresponding camera image

0121 | ‘ —— training @ 0.002
Al validation @ 0.018
0101 /| j
\“ |
. | ‘\ \“ “\ | ‘
‘\u | | | | | “‘ Q @ @ Q
0.02 MAVA — AN
0.001__ i i . i .
0 10 20 30 40 50

epoch

Training loss The first 14 Zernike polynomials (except 0" order)!"]

o
o
(e}

mean squared error

°
o
'y

[1] Nschloe for wikipedia, cropped, license:

(2020).
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https://creativecommons.org/licenses/by-sa/4.0/deed.en

The Spatial-Light-Modulator Project at FLUTE QAT
m Karlsruhe Institute of Technology

Preliminary results

Test data:

. Predicted phase patterns match
originals reasonably well

« Inference works reasonably well!

original cam img original phase mod

Experimental application:
. Seems to work in general

. Butis probably not useful yet

predicted phase mod

—~ — target cam img original cam img modulated cam img
= 173 13 256 o 256 5 256 o
@ = = . @ o o
E 23 S 3 - g 23 23 2
5 Z & £ i ' £ 3 2 a Z a Z
2 5 = c = = = = 2 = 2 =
> g > v > o > S g > g
c ® ® k= = =
: = ; 05 ; 05 " = . 1 = " 1
x (pixel) x (pixel) e x (pixel) e x (pixel) X (pixel) X (pixel)
original cam img original phase mod ~ predicted phase mod ~ target cam img original cam img modulated cam img
256 o 13 13 256 o 256 = 256 o
o E = _ o o o
g e 3 S 3 S E 23 23 2
N =B 4 > 4 > =SS S > <
£ 8 2 2 g g
’ 1 = . 0< - 05 - = - = " 1 =
x (pixel) x (pixel) Q x (pixel) a x (pixel) x (pixel) X (pixel)

Conclusion: works but is not useful yet!
Outlook: improve experimental setup and possibly separate neural network!
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KIT

Karlsruhe Institute of Technology

Thank you for
your attention!

What questions do you
have for me?

T IBPT

Karlsruhe Institute of Technology Institute for Beam Physics and
Technology

Dr. Andrea Santamaria Garcia
Al4Accelerators team leader

andrea.santamaria@kit.edu
https://twitter.com/ansantam
https://www.linkedin.com/in/ansantam/
https://github.com/ansantam
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