Generative Models for Fast Simulation of Showers in Highly Granular Calorimeters

ACCLAIM Meeting 2023, Jena

E. Buhmann², S. Diefenbacher^{2,3}, E. Eren¹, F. Gaede¹, G. Kasieczka², W. Korcari², A. Korol¹, K. Krüger¹, **P. McKeown^{1*}**, L. Rustige¹

¹ Deutsches Elektronen Synchrotron, DESY
² University of Hamburg (UHH)
³ Lawrence Berkeley National Laboratory (LBNL)

* peter.mckeown@desy.de

HEIMHOIT

Introduction

- Full MC simulation (Geant4) is computationally expensive
 - Calorimeters most intensive part of detector simulation
- Generative models potentially offer high fidelity simulation with significant speed up:
 - More sustainable computing

CMS Collaboration, Offline and Computing Public Results (2022), https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults

High Granularity Calorimeters

- Destructively measure particle's energy
 - Produce shower of secondary particles until totally absorbed
- Sampling calorimeters- measure fraction of energy
- Future calorimeters feature ever increasing granularity (e.g. @ HL-LHC, future Higgs Factories)
- DESY-UHH group investigating generative ML architectures in context of ILD detector:

c.f. a few cm^2 for

ATLAS/CMS ECAL (before High Lumi)

- ECAL: Si-W 5mm x 5mm 🔸
- HCAL: Sci-Fe 30mm x 30 mm

Previous Work

- Achieved high fidelity generation of photon and pion showers with BIB-AE architecture (and post processing)
 - 90 deg impact angle, fixed position in calorimeter
 - Fixed regular 3D grid geometry (O(10-100k) voxels)

BIB-AE: Bounded Information Bottleneck Auto-Encoder also comparison to GAN and WGAN ...

Getting High: High Fidelity Simulation of High Granularity Calorimeters with High Speed, E. Buhmann et al., <u>arXiv:2005.05334</u>, Comput Softw Big Sci 5, 13 (2021)

Hadrons, Better, Faster, Stronger E. Buhmann et al, <u>arXiv:2112.09709</u>, MLST 3 2, 025014 (2022),

Towards An Application In Realistic Detector Simulation

Energy and Angular Conditioning

- Photons incident at fixed position
- Extend **BIB-AE** architecture
- Vary incident energy and polar angle
 - Large training sample 500k showers
 - Uniform in [10-100 GeV, 30-90 deg]
 - Test/validation samples at dedicated energies and angles

30x60x30 grid

Angular Conditioning Performance

0.35

New Angles on Fast Calorimeter Shower Simulation,

S.Diefenbacher et al.

arXiv: 2303.18150, submitted to MLST

Energy Conditioning Performance

New Angles on Fast Calorimeter Shower Simulation, S.Diefenbacher et al.

arXiv: 2303.18150, submitted to MLST

energy

Performance After Reconstruction

New Angles on Fast Calorimeter Shower Simulation, S.Diefenbacher et al.

arXiv: 2303.18150, submitted to MLST

Best (left) and worst (right) test point - based on JSD \rightarrow **Excellent** physics fidelity

CaloClouds: Motivation

- **Regular grid models** show very high physics fidelity yet they have **two drawbacks**:
 - Low occupancy → lots of superfluous compute
 - Irregular detector geometries → back projection creates artifacts

S.Luo, W.Hu: Diffusion Probabilistic Models for 3D Point Cloud Generation, <u>arXiv:2103.01458</u>

Energy [MeV]

- Solution: **point cloud** based models
- Adapt models to HEP calorimeter use case
- Use additional information in the Geant4 simulation:
 - Much higher granularity than physical geometry
 - Gain geometry independence

CaloClouds: Data Preprocessing

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, E. Buhmann et al., <u>arXiv:2305.04847</u>

- Using all Geant4 steps directly is computationally prohibitive
 - 40k Geant4 steps at 90 GeV
- Apply preprocessing step:
 - Project Geant4 steps into ultra-high granularity grid (36 times more granular than ILD ECAL)
 - Reduce number of points by factor ~7:
 - Up to 6000 space points
- Again study photons in ILD ECAL
 - 10-100 GeV, 90 deg impact
 - Additionally check the effects of varying incident point (hence geometry)
 Page 11

CaloClouds: Diffusion Model Architecture

Generated Shower

PointWise

Net

......

.....

steps

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, E. Buhmann et al., arXiv:2305.04847

- Training of PointWise Net with EPiC Encoder (e-Print: 2301.08128)
- Inference uses two additional flows for number of space points, calibration and latent space

Latent

Flow

Calibration

 $E_{\text{sum}}, N_{z,i}$

Shower

Flow

CaloClouds: Results

CaloClouds: Fast Geometry-Independent Highly-Granular Calorimeter Simulation, E. Buhmann et al., arXiv:2305.04847

- Overall observe very good physics fidelity
- First successful application of diffusion models to (high granularity) calorimeter simulation using point clouds

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	4082 ± 170	×1
	CALOCLOUDS	3509 ± 220	$\times 1.2$
GPU	CALOCLOUDS	38 ± 3	$\times 107$

Future work: focus on improving timing

30

Conclusion

Achieved

- Energy and angular conditioning for EM showers with high physics fidelity
 - Strong performance after reconstruction with PandoraPFA
- CaloCloud diffusion model for EM showers
 - First successful generation of calorimeter showers as a point cloud
 - Achieve a high degree of **geometry independence**

Next Steps

- Continue to **improve** simulation **speed** with models and **extend functionality**
 - Integrate models into full detector simulation pipelines and study full physics benchmarks
 - Investigate methods to **speed up CaloCloud** diffusion model

Effects Of Pre-clustering To Ultra-high Granularity

example: Geant4 90 GeV shower in layer 21 with full round-trip pre-clustering and

x4 grid

.08

0.06

-0.04

-0.02

10.00

overlay of 2k Geant4 90 Gev showers in layer 21 with full round-trip pre-clustering and back-projection relative difference per cell < 2% in core of shower

relative difference with lower granularity

40

20 30 X [mm]

30

DESY. | ACCLAIM Meeting 2023, Jena | Peter McKeown | 03.07.2023

CaloClouds: Effects Of Varying Geometry

Timing Of Generative ML Methods

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	2684 ± 125	×1
	WGAN BIB-AE	47.923 ± 0.089 350.824 ± 0.574	$\times 56 \times 8$
GPU	WGAN BIB-AE	$egin{array}{c} 0.264 \pm 0.002 \ 2.051 \pm 0.005 \end{array}$	$\begin{array}{c} \times 10167 \\ \times 1309 \end{array}$

BIB-AE/WGAN, pion showers 10-100 GeV uniform

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	4417 ± 83	×1
	BIB-AE	362 ± 2	$\times 12$
GPU	BIB-AE	4.32 ± 0.09	$\times 1022$

BIB-AE, photon showers 10-100 GeV - 30-90 deg uniform

Hardware	Simulator	Time / Shower [ms]	Speed-up
CPU	Geant4	4082 ± 170	×1
	CALOCLOUDS	3509 ± 220	×1.2
GPU	CALOCLOUDS	38 ± 3	×107

CaloClouds, photon showers 10-100 GeV uniform