Quantum Approximate Optimization Algorithm

Jamal Slim

jamal.slim@desy.de

SFT Weekly meeting May 25, 2023

Jamal Slim QML-QAOA May 25, 2023 1/17

Presentation Overview

- 1 The Max-Cut problem
- 2 The Ising model
- 3 Thinking quantum: mapping problems into quantum computing
- Quantum Unconstrained Binary Optimization (QUBO) -Introduction
- 6 QUBO and the Ising model
- 6 Combinatorial optimization and the QUBO model

 The Max-Cut problem aims to find the maximum cuts in a Graph, a mathematical structure

- Divide the vertices into 2 sets in a way that the number of edges with extremes in different sets of the cut is maximum possible
- These edges are called cut, and their number define the size of the cut

Examples of cuts are shown below

- Left panel, cut size = 5, right panel, cut size = 4
- The maximum cut is **not** unique

- The Max-Cut problem can be formulated mathematically without graphical representation
- A combinatorial optimization problem
- Let z_i , i = 0, 1, ..., n-1, be a vertex on the graph, with $z_i \in \{-1, 1\}$
- Each z assignment represent a cut, e.g., $z_0 = z_2 = z_3 = 1$, and $z_1 = z_4 = -1$ or vice versa

The Max-Cut problem as a combinatorial optimization

An edge between 2 vertices j and k is a cut if $z_i z_k = -1$

Jamal Slim QML-QAOA May 25, 2023 5/1

The Max-Cut problem can be formulated as

minimize
$$\sum_{\{j,k\}\in E} z_j z_k$$

subject to
$$z_j \in \{-1,1\},$$

where *E* is the set of edges in the graph

minimize
$$\sum_{\{j,k\}\in E} z_0z_1 + z_0z_2 + z_1z_2 + z_1z_3 + z_2z_4 + z_3z_4$$
subject to $z_i \in \{-1,1\}$,

Jamal Slim QML-QAOA May 25, 2023 6/17

The Ising model

- The mathematical model describing the ferromagnetic interaction of particles with spin (lattice structure)
- The particle spin are represented by $z_j \in \{-1, 1\}$ (spin down and spin up) respectively

The Ising model

The Hamiltonian function of the Ising model read

$$-\sum_{j,k}J_{jk}z_{j}z_{k}-\sum_{j}h_{j}z_{j} \tag{1}$$

where

- The coefficients J_{jk} represent the interaction between particles j and k
- The coefficients h_j represent the influence of an external magnetic field on particles j

Jamal Slim QML-QAOA May 25, 2023 8/13

The Ising model

- The coefficients J_{jk} are the numbers on the edges
- Homogeneous magnetic field, i.e. the coefficients $h_j = 1$

$$\min \sum_{\{j,k\}\in E} z_0 z_1 - 2z_1 z_2 - 3z_0 z_4 + z_1 z_5 + 2z_2 z_6 - 3z_3 z_7 + \cdots$$

s.t. $z_i \in \{-1, 1\},\$

Z matrix

Rotation operator of the state vector around the z-axis: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

• $Z\ket{0}=\ket{0}$, $Z\ket{1}=-\ket{1}$, $\langle 0|Z\ket{0}=1$, and $\langle 1|Z\ket{1}=-1$

Key to quantum formulation

The Z matrix can be used to evaluate terms in the function to be minimized

Consider the following Max-Cut problem

minimize
$$z_0z_1 + z_0z_2$$

subject to $z_j \in \{-1, 1\}, j = 0, 1, 2,$

- Working with 3 vertices, 3 qubits are used
- Apply the tensor product $Z \otimes Z \otimes I$ on the basis $|010\rangle$ leads to $\langle 010|Z \otimes Z \otimes I |010\rangle = -1$
- |010⟩ can be interpreted as a cut where vertices 0 and 2 are assigned to one set and vertex 1 to the other
- $\langle 010|Z\otimes Z\otimes I|010\rangle = -1$: the edge (0,1) has extremes in different sets of the cut
- $Z \otimes Z \otimes I$, Z operators act on qubits 0 and 1
- $Z \otimes Z \otimes I$ is denoted as Z_0Z_1

minimize
$$z_0z_1 + z_0z_2$$

subject to $z_j \in \{-1, 1\}, j = 0, 1, 2,$

- Furthermore $\langle 010 | Z_0 Z_2 | 010 \rangle = 1$
- Edge (0,2) is not a cut
- In analogy, the Z_0Z_1 and Z_0Z_2 can be applied on any basis $|x\rangle \in \{000, \cdots, 111\}$
- By linearity

$$\langle x|Z_0Z_1+Z_0Z_2|x\rangle$$

- Furthermore $Z_jZ_k|x\rangle=|x\rangle$ or $Z_jZ_k|x\rangle=-|x\rangle$
- $|x\rangle$ is an eigenvector of Z_jZ_k with eigenvalues of 1 or -1, therefore for $x \neq y$

$$\langle y|Z_jZ_k|x\rangle=\pm\langle y|x\rangle=0$$

12/17

- $|\Psi\rangle = \sum_{x} a_{x} |x\rangle$
- By linearity

$$\langle \Psi | Z_j Z_k | \Psi \rangle = \sum_x |a_x|^2 \langle x | Z_j Z_k | x \rangle$$

In particular for the Max-Cut case,

$$\langle \Psi | Z_0 Z_1 + Z_0 Z_2 | \Psi \rangle = \sum_{x} |a_x|^2 \langle x | Z_0 Z_1 + Z_0 Z_2 | x \rangle$$

Given that $\sum_{x} |a_x|^2 = 1$, then this sets an upper limit according to

$$\sum_{x} |a_{x}|^{2} \langle x| Z_{0}Z_{1} + Z_{0}Z_{2} |x\rangle \ge \sum_{x} |a_{x}|^{2} \langle x_{\min}| Z_{0}Z_{1} + Z_{0}Z_{2} |x_{\min}\rangle$$

$$= \langle x_{\min}| Z_{0}Z_{1} + Z_{0}Z_{2} |x_{\min}\rangle$$

Jamal Slim QML-QAOA May 25, 2023 13/17

- $|x_{min}\rangle$ is a basis state (or a set of them) for which $\langle x|Z_0Z_1+Z_0Z_2|x\rangle$ is minimum
- $|x_{min}\rangle$ represents a maximum cut
- The Maximum-Cut can now therefore be written as

minimize
$$\langle \Psi | Z_0 Z_1 + Z_0 Z_2 | \Psi \rangle$$

where $| \Psi \rangle \in$ set of qauntum states of 3 qubits

Minimization over all possible quantum states

 Jamal Slim
 QML-QAOA
 May 25, 2023
 14/17

The quantity

$$\langle \Psi | \sum_{j,k \in E} Z_j Z_k | \Psi \rangle = \sum_{j,k \in E} \langle \Psi | Z_j Z_k | \Psi \rangle$$

- Is the **expected value** of $\sum_{j,k\in E} Z_j Z_k$
- Reaches its minimum at one of the eigenvectors
- This eigenvector is called the ground state

For the Ising model, the quantum model reads

minimize
$$\sum_{j,k\in E} J_{jk} \langle \Psi | Z_j Z_k | \Psi \rangle - \sum_j h_j \langle \Psi | Z_j | \Psi \rangle$$
 where $|\Psi \rangle \in \text{set of qauntum states of n qubits}$

Jamal Slim QML-QAOA May 25, 2023 15 / 17

Next

- 1 The Max-Cut problem
- 2 The Ising model
- 3 Thinking quantum: mapping problems into quantum computing
- Quantum Unconstrained Binary Optimization (QUBO) -Introduction
- 6 QUBO and the Ising model
- **6** Combinatorial optimization and the QUBO model

The End

Questions? Comments?