Technical contributions of DESY apart from upgrade and CP

Jour-fixe - June 23

C. Sander (on behalf of many)

Semi-Conductor-Tracker

Semi-Conductor-Tracker

Activities at DESY

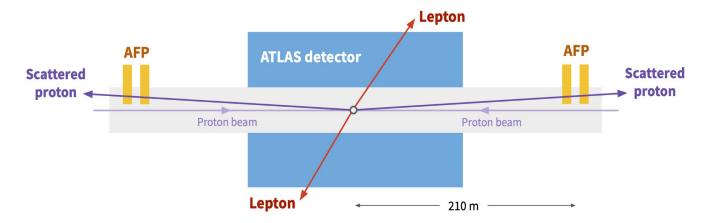
- SCT Calibration loop: Maintenance (DESY institutional commitment)
 - Identification and upload to DB of noisy strips (to be masked during bulk reconstruction)
 - Writing of DQ data (raw occupancy, efficiency, noise occupancy, byte stream errors) to conditions database
 - Transition to Run 3 was big effort (migration to Rel22); no issues in transition to 2023!
 - Ongoing improvements to increase performance and reliability
- Several SCT DAQ & DCS on call shifts
- Several other finished or dropped SCT related activities over the last years

People involved: Christian Sander (staff, 0.45 OTP), Evgeniya Cheremushkina (postdoc, 0.15 OTP + shifts)

By end of 2023: replacement for Evgeniya (Jakub expected to join); then covered until end of Run 3

Activities at DESY

- Run 2:
 - 13 TeV luminosity analysis (vdM analysis and track counting)
 - VdM analysis of 2017 5 TeV run
 - Run 2 legacy paper submitted to EPJC in December 2022
 - Setting new precision record of 0.83% uncertainty for full Run 2 dataset: 140.1 ± 1.2 fb⁻¹ (<u>https://arxiv.org/pdf/2212.09379.pdf</u>)
- Run3:
 - \sim 2022 dataset yields 31.4 ± 0.7 fb⁻¹ (<u>ATL-DAPR-PUB-2023</u>); initial precision of 2.2%
 - Preliminary vdM analysis of 2022/2023 luminosity
 - Follow-up of new incoming vdM scans
 - Track counting *Z*-efficiency corrections
 - Pixel cluster counting studies
 - Responsibilities: Luminosity vdM and Calibration Transfer SG convener (Klaus)


People involved: Staff: Klaus Mönig, Claudia Seitz; Postdocs: Filippo Dattola, Oliver Majesky; PhD students: Cédrine Hügli, Thomas Mclachlan

ATLAS Forward Proton

AFP

Activities at DESY

- Intact forward scattered protons are key tool to identify photon-induced processes
- Measure them using AFP detectors: Tracking & Time-of-Flight detectors
- Provides powerful background rejection:
 - New kinematic information e.g. total missing momentum by combining AFP & central ATLAS
 - Time-of-flight information to match protons in AFP to ATLAS *z* position (distinguish from pile-up)
- Need to precisely identify and calibrate protons for use in physics analysis

AFP

Activities at DESY

- Coordination of Run 3 recommendations for forward protons
 - 2022 data already doubles existing dataset recorded with AFP
- Run 3 global alignment of AFP tracker planes:
 - Performing in-situ alignment using photon-induced di-muon events
 - Crucial to align detectors to use forward proton object in Run 3 data
- AFP offline monitoring
- AFP software and simulation

People involved:

- Staff: Lydia Beresford (YIG leader, LHC Forward Physics WG convener)
- Postdoc: Savannah Clawson (ARP (ATLAS Roman Pot) Combined Performances Coordinator); Clara Leitgeb
- PhD student: Weronika Stanek-Maslouska, Yusuf Cekmecelioglu

Monte Carlo / Pile-Up / Pheno

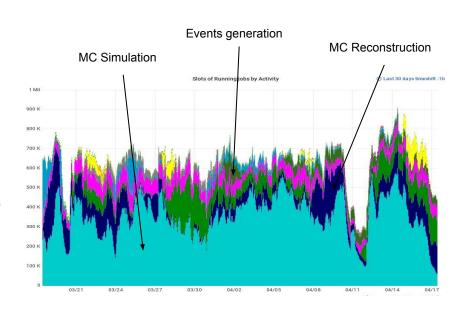
Monte Carlo

Activities at DESY

Generators software maintenance and development (institutional commitment)

- Successful switch to HepMC3 object oriented, C++ package for event record encoding and manipulation
- Successful start of Run 3 EVGEN production (now ongoing)
- Preparations for retirement of software infrastructure used for older EVGEN production campaigns, and providing the same functionality with use of new releases and software infrastructure
- Creation of releases for running production and validation of MC generators
- Generator software fixes and improvements needed for running in new software configuration (compiler changes, athena modifications)
- User support

People involved: Ewelina Lobodzinska (staff)


DESY.

Monte Carlo production coordination

Activities at DESY

- Cooperation with Physics Coordination, ATLAS
 Distributed Computing, Physics Validation,
 Distributed Data Management and other teams on MC production in the Central Production System
- Preparation of new MC campaigns
- Running large MC sample production for Run 3 campaigns
- Monitoring and optimising MC production resources usage
- Support for shifters running MC production for Run 2 campaigns

People involved: Ewelina Lobodzinska (staff, MC Production Coordinator)

11

Pile-up / Al / Pheno

Activities at DESY

- Machine learning algorithm development
 - Diffusion networks to generate pile-up predictions for Run 3
- Organisation of Helmholz.ai Konferenz @ DESY
- Sherpa-fusing: Fusing fragments for several processes in one setup
 - E.g. combine ttbb and tt+jets multi-leg predictions
 - Merge samples by removing ttbb-like events from tt+jets multi-leg prediction
 - Fusing leads to consistent treatment covering full phase space

People involved:

- Staff: Judith Katzy
- Postdoc: Stephen Jiggins
- PhD: Lars Ferencz

12

Software, Computing, Operation

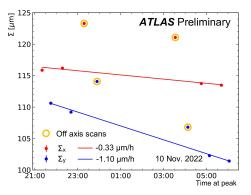
SCO

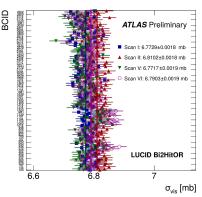
Activities at DESY

 Members of DESY-ATLAS group hold key coordination positions, covering all aspects of ATLAS computing, resulting in a significant and visible presence

People involved and roles:

- James: Data Preparation Coordinator (Top level ATLAS coordinator position)
- David: ATLAS Distributed Computing coordination (until September), ATLAS Software & Computing Coordinator (from October, Top level)
- Federico: Data Re-processing Coordinator
- Nicholas Styles: Software Coordinator
- Priscilla: CRC (Computing Run Coordinator) shifts
- Johanna: Sys. Admin, further activities


DESY. 14

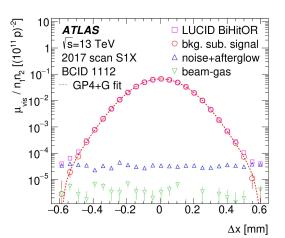

Backup

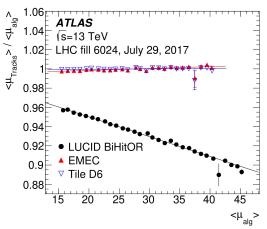
Run 3 activities

Run 3 initial calibration PUB Note released

- 2022 dataset yields 31.4 ± 0.7 fb⁻¹ (<u>ATL-DAPR-PUB-2023</u>)
- Initial precision of 2.2%
- Van der Meer (VdM) scan
 - Leading involvement in November 2022 vdM session
 - Quick turn-around on calibration including detailed systematic uncertainties
 - Provided luminosity measurement for Moriond 2023 analyses

Data sample	2022
Uncertainty contributions [%]:	
Statistical uncertainty	0.01
Fit model	0.24
Background subtraction	0.06
FBCT bunch-by-bunch fractions	0.01
Ghost-charge and satellite bunches	0.17
DCCT calibration	0.20
Orbit-drift correction	0.06
Beam position jitter	< 0.01
Non-factorisation effects	1.07
Beam-beam effects	0.35
Emittance damping correction	0.21
Length scale calibration	0.03
Inner detector length scale	0.24
Magnetic non-linearity	0.32
Bunch-by-bunch $\sigma_{\rm vis}$ consistency	0.50
Scan-to-scan reproducibility	0.27
Reference specific luminosity	0.43
Subtotal vdM calibration	1.45
Calibration transfer	1.50
Calibration anchoring	0.53
Long-term stability	0.41
Total uncertainty [%]	2.19


Run 2 activities


Run 2 legacy paper submitted to EPJC in December 2022

 Setting new precision record of 0.83% uncertainty for full Run 2 dataset: 140.1 ± 1.2 fb⁻¹ (<u>https://arxiv.org/pdf/2212.09379.pdf</u>)

Main DESY contributions over the last years:

- Van der Meer (VdM) scan
 - Absolute calibration of main luminosity measurement in ATLAS
 - Re-analysis of all 13 TeV vdM sessions of Run2
- Track counting (TC) luminosity
 - Key ingredient for extrapolation of main luminosity measurements from vdM to physics regime
 - Optimization of track counting working points, monitoring of track selection stability using Z bosons, data reprocessing
 - Conveners of Inner Detector luminosity subgroup

17