# FastSim Parametrization of Beam Dump

Oleksandr Borysov, <u>Arka Santra</u>, Noam Tal Hod June 5, 2023, LUXE Software and Analysis Meeting,

### Introduction



- limited.
- We have used Geant4 simulation using LUXE geometry
  - Simulation inside the beam-dump is **computationally expensive.** 
    - Limits the number of BXs we can generate.
    - We only have 2 BX of e+laser background sample for TDR.
- Way out:
  - Not properly simulate the dump in Geant4, but try to parametrize the response of the dump.
  - This is faster by at least one order of magnitude.
    - Can overcome the computation challenge.

• Need many BXs/events of simulated background samples to characterize the detector performances, otherwise the results are statistically

## Fast simulation strategy

- Disable the dump and replace all its "output" by sourcelike particles
  - At the tracker last layer

 $\star$ 100% of the neutron come from dump

- $\star$ >10% of the photons come from dump
- $\star$ ~1% of the electrons and positrons from the dump
- Look at the dummy volume (sampling plane) located just outside of the surface of the dump

• will plot 
$$(\frac{dN}{dE} \text{ and } \frac{dN}{dt})$$
 or  $\frac{d^2N}{dEdt}$ ,  $\frac{d^2N}{drd\theta_p}$ ,  $\frac{d^2N}{d\phi_p d\phi_{pos}}$ ,...

• Here r is just 
$$\sqrt{x^2 + y^2}$$
, position parameter.

- $\theta_p, \phi_p$  is the polar angle and azimuthal angle of the  $oldsymbol{O}$ momentum  $\rightarrow$  representative of direction of the particle.
- $\phi_{\rm pos}$  is position azimuthal angle, and t is time.
- Later: generate from the sampling plane  $oldsymbol{O}$ according to these plots
  - ★ Use TH1D::GetRandom() and TH2D::GetRandom2() (for variables that are correlated) methods.

From Noam Tal Hod, WIS



## Dump in the LUXE Geometry

### Schematic diagram of the dump in the LUXE geometry Detector position: illustration purpose, not in the Geant4 geometry used in this talk. Calorimeter Tracker Х Beam axis, Z 1.16 degrees Ζ *x*<sub>0</sub>=-92.65mm $\bigstar$ In this geometry, no symmetry Dump axis, Z' Scintillator Cherenkov around the dump axis $\star x_0$ is where the dump axis crosses the sampling surface. Sampling surface ★ In LUXE coordinates, need to N separate out r (= $\sqrt{(x^2 + y^2)}$ ) -Test surface Test surface $\star$ rUp when x $\geq x_0$ $\star$ rDn when x < $x_0$ $\bigstar$ This geometry has only dump, z=4125mm z=5450.25mm z=6621.91mm the sampling surface and the test surfaces $\bigstar$ No detector planes.





### Strategy for FastSim in LUXE Geometry

• The symmetry in r and  $\phi_{pos}$  is unavailable for the dump particles in LUXE geometry, we need to come up with this strategy:

1.Plot  $\frac{d^2N}{dxdy}$   $\rightarrow$  randomly draw x and y from this distribution.

2. This gives r and  $\phi_{pos}$ ;

(i)depending on  $x > x_0$  or  $x < x_0$ , we select  $r_{Up}$  or  $r_{Dn}$ .

3.Plot  $\frac{d^2N}{dr_{Up}d\theta_p}$  and  $\frac{d^2N}{dr_{Dn}d\theta_p} \rightarrow$  given the r, we project thi

4.Plot  $\frac{d^2N}{d\phi_p d\phi_{pos}}$   $\rightarrow$  given the  $\phi_{pos}$ , we project this distribution

5.Randomly draw  $\theta_p$  from  $\frac{dN}{d\theta_p}$  and  $\phi_p$  from  $\frac{dN}{d\phi_p}$ 

6. We have x, y,  $\phi_{pos}$ ,  $heta_p$  and  $\phi_p$ 

 $d^2N$ 7. Energy and time can be randomly drawn from  $\frac{d}{dEdt}$  (for  $\frac{d}{dEdt}$ 

is distribution on 
$$\theta_p$$
 to get  $\frac{dN}{d\theta_p}$  (1D distribution)  
ution on  $\phi_p$  to get  $\frac{dN}{d\phi_p}$  (1D distribution)

or neutron) or 
$$\left(\frac{dN}{dE} \text{ and } \frac{dN}{dt}\right)$$
 (for photons).

### **Plot labels:**

- In this talk there will be three types of plots compared:
  - 1. FullSim Distributions from full Geant4 processing of the dump
  - 2. **Fast Sampling**: sampled randomly from the FullSim distribution at the sampling plane.
  - 3. **FastSim** Geant4 processing where dump is replaced by particles following distributions in Fast Sampling above.

### **Baseline distribution plots for LUXE geometry** at the sampling surface (z=6621.91mm)

 $\star$  Plots used for sampling.



### **Baseline distributions from FullSim in LUXE: neutron at sampling surface**



dump\_plane\_bkg\_track\_phi\_pos\_phi\_neutron\_cut



dump\_plane\_bkg\_track\_rDn\_track\_theta\_neutron\_cut

 $\bigstar$  For E vs t plot of neutron, we only go up to 100 eV of neutron.

 $\bigstar$ Neutron less energetic than that are not interesting.

### **Baseline distributions from FullSim in LUXE: photon at sampling surface**





### **Comparison of FullSim and Fast Sampling** distributions from histograms at the sampling surface (z=6621.91 mm) in LUXE geometry

 $\star$  No z propagation in particles.



### Comparison of FullSim and Fast Sampling distributions at the sampling surface for the LUXE geometry: neutron



- ★Comparison of distribution at sampling surface for neutrons
  - ★Agreement is very good within the statistics except momentum direction at very backward direction.
     ★Need to see its
    - effect in the test surfaces.
  - ★The good modeling between FullSim and Fast Sampling is a sanity check.



### Comparison of FullSim and Fast Sampling distributions at the sampling surface for the LUXE geometry: photon



- ★Comparison of distribution at sampling surface for photons
  - ★Agreement is very good within the statistics except momentum direction at very backward direction.
     ★Need to see its
    - effect in the test surfaces.
  - ★The good modeling between FullSim and Fast Sampling is a sanity check.



# Comparison of FullSim and FastSim distributions at the test surface 1, z=5450.25mm

 $\star$  Particles generated at sampling plane are propagated to test surfaces by Geant4.









 $\bigstar$  Distributions are looked at **z=5450.25mm**.  $\star$ FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles  $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$ 









 $\bigstar$  Distributions are looked at **z=5450.25mm**.  $\star$ FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles  $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$ 











 $\bigstar$  Distributions are looked at **z=5450.25mm**.  $\star$ FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles  $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$ 











 $\bigstar$  Distributions are looked at **z=5450.25mm**.

 $\star$ FullSim and FastSim has comparable statistics.

★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles

 $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$ 

 $\star$ Problem may be because we have very few forward particles in FullSim to sample the distribution from.

 $\bigstar$  We can modify the  $\theta_p$  (direction of the particles) such that this problem is resolved.







 $\bigstar$  Distributions are looked at **z=5450.25mm**.

 $\star$ FullSim and FastSim has comparable statistics.

★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles

 $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$ 

 $\star$ Problem may be because we have very few forward particles in FullSim to sample the distribution from.

 $\bigstar We can modify the <math display="inline">\theta_p$  (direction of the particles) such that this problem is resolved.



 $10^{3}$ 





★Distributions are looked at z=5450.25mm.
 ★FullSim and FastSim has comparable statistics.
 ★FullSim and FastSim distributions are comparable.

 $\bigstar$  Mis-modeling in very backward particles

 $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$ 

![](_page_20_Figure_6.jpeg)

![](_page_20_Figure_7.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_21_Figure_2.jpeg)

![](_page_21_Figure_3.jpeg)

![](_page_21_Figure_4.jpeg)

★Distributions are looked at z=5450.25mm.
 ★FullSim and FastSim has comparable statistics.
 ★FullSim and FastSim distributions are comparable.

- ★Mis-modeling in very backward particles
- $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$
- ★Problem may be because we have very few forward particles in FullSim to sample the distribution from.
- ★We can modify the  $\theta_p$  (direction of the particles) such that this problem is resolved.

![](_page_21_Figure_11.jpeg)

![](_page_22_Figure_1.jpeg)

![](_page_22_Figure_2.jpeg)

★Distributions are looked at z=5450.25mm.
 ★FullSim and FastSim has comparable statistics.
 ★FullSim and FastSim distributions are comparable.

- ★Mis-modeling in very backward particles
- $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$
- ★Problem may be because we have very few forward particles in FullSim to sample the distribution from.
- ★We can modify the  $\theta_p$  (direction of the particles) such that this problem is resolved.

![](_page_22_Figure_9.jpeg)

### **Comparison of FullSim and FastSim** distributions at the test surface 2, z=4125mm

 $\star$  Particles generated at sampling plane are propagated to test surfaces by Geant4.

![](_page_24_Figure_1.jpeg)

![](_page_24_Figure_2.jpeg)

![](_page_24_Figure_3.jpeg)

![](_page_24_Figure_4.jpeg)

 $\bigstar$  Distributions are looked at **z=4125mm**.

 $\star$ FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles  $(r \leq 200 \text{ mm at z=4125mm}).$ 

![](_page_24_Picture_8.jpeg)

![](_page_25_Figure_1.jpeg)

![](_page_25_Figure_2.jpeg)

![](_page_25_Figure_3.jpeg)

![](_page_25_Figure_4.jpeg)

 $\bigstar$  Distributions are looked at **z=4125mm**.

 $\star$ FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles  $(r \leq 200 \text{ mm at z=4125mm}).$ 

![](_page_25_Picture_9.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_26_Figure_2.jpeg)

![](_page_26_Figure_3.jpeg)

![](_page_26_Figure_4.jpeg)

★Distributions are looked at z=4125mm.
 ★FullSim and FastSim has comparable statistics.
 ★FullSim and FastSim distributions are comparable.

★Mis-modeling in very backward particles  $(r \leq 400 \text{ mm at } z=4125 \text{ mm}).$ 

![](_page_27_Figure_1.jpeg)

![](_page_27_Figure_2.jpeg)

![](_page_27_Figure_3.jpeg)

![](_page_27_Figure_4.jpeg)

★Distributions are looked at z=4125mm.
 ★FullSim and FastSim has comparable statistics.
 ★FullSim and FastSim distributions are comparable.

★Mis-modeling in very backward particles  $(r \leq 400 \text{ mm at } z=4125 \text{ mm}).$ 

### Summary and Outlook

![](_page_28_Picture_1.jpeg)

### **Summary and next steps:**

- Distributions between FastSim and FullSim are compatible at different distances for LUXE dump only geometry.
  - Shown comparison plots from test surfaces at z=5450.25 mm and at z=4125mm.
  - Residual mis-modeling source of systematic uncertainty.
- Mis-modeling in very forward particles
  - This is because the FullSim sample is statistically limited in this region.
    - Plan is to modify the direction  $\theta_p$  to match with FullSim before sampling.
    - Work on-going.
  - May shift to Generative Adversarial Network for better result.
    - The Network should be able to handle the mis-modeling of  $\theta_p$ .

![](_page_29_Picture_10.jpeg)

## Thank you!

![](_page_31_Picture_0.jpeg)

![](_page_32_Picture_0.jpeg)

![](_page_32_Figure_2.jpeg)

Arka Santra

### **Different particles generated from dump: FullSim result**

![](_page_33_Figure_1.jpeg)

At the tracker last layer 100% of the neutron come from dump >10% of the photons come from dump  $\star$ ~1% of the electrons and positrons from the dump

![](_page_33_Figure_4.jpeg)

34

![](_page_33_Picture_6.jpeg)

### Simulation for dump only geometry:

- We had **0.0056 BX** of dump only simulation FullSim previously produced by Sasha
  - That geometry had only the dump, and then four particle recording planes.
- Electron beam of 16.5 GeV directly hitting the dump
- This dump is made of Aluminum and Copper
  - The origin is at the center of the dump.
  - We look at FullSim distributions from z=-350mm (sampling surface), as this is closest to the dump face.
    - There are **test surfaces** which record particles at z=-5000mm, z=-10000mm and z=-15000mm.
- In this talk there will be three types of plots compared:
  - 1. **FullSim** Full Geant4 processing of the dump
  - 2. **Fast Sampling**: sampled randomly from FullSim distribution.
  - 3. **FastSim** Geant4 processing where dump is replaced by particles following distributions in 2 above.

# 260 MM

![](_page_34_Picture_16.jpeg)

![](_page_34_Picture_17.jpeg)

# Baseline distribution plots for dump only geometry

### **Baseline distributions from FullSim: neutron at sampling surface**

![](_page_36_Figure_1.jpeg)

of 
$$\phi_p$$
 and  $\phi_{
m pc}$ 

### **Baseline distributions from FullSim: photon at sampling surface**

![](_page_37_Figure_1.jpeg)

dump\_plane\_bkg\_track\_r\_track\_theta\_photon\_cut

![](_page_37_Figure_3.jpeg)

 $\theta_p$  vs r

**Correlation!** 

![](_page_37_Figure_5.jpeg)

 $\phi_{
m pos}$  vs  $\phi_p$ **Correlation!** 

### dump\_plane\_bkg\_track\_phi\_pos\_phi\_photon\_cut

- $\star \theta_p$  and r,  $\phi_p$  and  $\phi_{pos}$  are correlated.
- $\bigstar$ E and r, E and  $\theta_p$  are not correlated.
- $\star$ To parametrize the neutrons from dump, we can utilize

**★**Correlation of  $\theta_p$  and r

**★**Correlation of  $\phi_p$  and  $\phi_{pos}$ 

★Time and energy are generated from 1D timing distribution of photon (in backup).

### **Comparison of FullSim and Fast Sampling** distributions from histograms at the sampling surface

![](_page_38_Picture_2.jpeg)

### **Comparison of FullSim and Fast Sampling distributions at the sampling surface: neutron**

40

![](_page_39_Figure_1.jpeg)

★Fast Sampling distributions are those solely prepared from FullSim histograms.
 ★They are not processed by Geant4.
 ★These are what fed to Geant4 for FastSim preparation.

- ★Comparison of distribution at sampling surface for neutrons
  - ★This is the point from where the FastSim distributions were created.
  - ★Agreement is very good within the statistics.
  - ★The good modeling between FullSim and random generation is a sanity check.

![](_page_39_Figure_7.jpeg)

### **Comparison of FullSim and Fast Sampling distributions at the sampling surface: photon**

![](_page_40_Figure_1.jpeg)

★Fast Sampling distributions are those solely prepared from FullSim histograms.
 ★They are not processed by Geant4.
 ★These are what fed to Geant4 for FastSim

preparation.

- ★Comparison of distribution at sampling surface for neutrons
  - ★This is the point from where the FastSim distributions were created.
  - ★Agreement is very good within the statistics.
  - ★The good modeling between FullSim and random generation is a sanity check.

![](_page_40_Figure_9.jpeg)

**Comparison of FullSim and FastSim** 

# distributions at the test surface, z=-5000mm

### A few 1D distributions between FastSim and FullSim: neutron

![](_page_42_Figure_1.jpeg)

10<sup>-3</sup>

10<sup>-5</sup>

 $10^{-6}$ 

10<sup>-4</sup>

10<sup>-2</sup>

10<sup>-1</sup>

<sup>1</sup>E [GeV]

![](_page_42_Figure_2.jpeg)

![](_page_42_Figure_3.jpeg)

r [mm]

![](_page_42_Figure_5.jpeg)

 $\bigstar$  Distributions are looked at **z=-5000mm**.

 $\star$ FullSim and FastSim has comparable statistics.

 $\star$ FullSim and FastSim distributions are matching quite well. ★Higher energy tail for FastSim - not very

concerning.

 $\bigstar$ These neutrons are not very likely to generate shower in the calorimeter.

 $\bigstar$ Neutrons are invisible in the tracker.

★Mis-modeling in very backward particles

 $(r \leq 300 \text{ mm at } z = -5000 \text{ mm}).$ 

 $\bigstar$ This can be source of systematic uncertainty in FastSim.

 $\bigstar$ Need to see what the situation is for LUXE geometry.

### A few 1D distributions between FastSim and FullSim: photon

![](_page_43_Figure_1.jpeg)

![](_page_43_Figure_2.jpeg)

![](_page_43_Figure_3.jpeg)

![](_page_43_Figure_4.jpeg)

![](_page_43_Figure_5.jpeg)

![](_page_43_Figure_6.jpeg)

- ★Mis-modeling in very backward particles
- $(r \leq 300 \text{ mm at z=-5000 mm}).$
- ★This can be source of systematic uncertainty in FastSim.
  - ★Need to see what the situation is for LUXE geometry.

![](_page_43_Figure_12.jpeg)

### **Dump geometry translated to LUXE**

★The effect of mis-modeling on calorimeter and LUXE tracker cannot be readily understood from z=-5000 mm testing surface as this is quite far from the actual position of calorimeter or tracker.

★We need to keep in mind that the calorimeter is 150mm away from the dump axis.

![](_page_44_Figure_3.jpeg)

### r vs $\theta_p$ distributions without phase space weight: FullSim at the sampling surface

![](_page_45_Figure_1.jpeg)

![](_page_45_Figure_2.jpeg)

photon

![](_page_45_Figure_4.jpeg)

neutron

### **1D distribution of photons : FullSim at the sampling surface**

dump\_plane\_bkg\_track\_time\_photon\_cut

![](_page_46_Figure_2.jpeg)

![](_page_46_Figure_4.jpeg)

Energy

### **Correlation with time: neutron**

![](_page_47_Figure_1.jpeg)

![](_page_47_Figure_2.jpeg)

dump\_plane\_bkg\_time\_track\_theta\_neutron\_weighted\_cut

**10**<sup>-1</sup>

★Time for neutron is generated from E vs t 2D plot

### Input tree for Geant4 simulation

- Putting the distributions in tree branches for Geant4 input
- The name of the branches are same as the **Tracks** tree used by Sasha
  - Branch details:

![](_page_48_Figure_4.jpeg)

For photons and neutrons, track id from 0 to number of generated particles. detid==-10 -> assignment to particles randomly generated from dump distributions

physproc==7000 for particles randomly generated from dump distributions. Randomly generated from dump distributions

Randomly generated from dump distributions

ptrackid==-10 - assignment to particles randomly generated from dump distributions

### The normalization in FastSim: photon

![](_page_49_Figure_2.jpeg)

 $\bigstar$ The photon normalization looks okay at different z

### The normalization in FastSim: neutron

![](_page_50_Figure_2.jpeg)

 $\star$ The neutron normalization looks okay at different z