Application of Bayesian Neural Networks to clustering for LUXE experiment

Roman Urmanov

05.06.2023

Introduction: Tracker

Clustering: ML motivation

"Pac-Man": adjacent hits combined into clusters. Cluster's "center of mass" is taken for track inference

- Binary output no information on number of particles
- LUXE will work in a wide range of pixel occupancies
- "Pac-Man" up to $\lesssim 10^4 e$ per BX
- Up to 3×10^5 e per BX in later stages

Hit density at $\xi=7$

Detector reference	Hit density [mm ⁻²]			
	MCD	ATLAS ITk	ALICE ITS3	
Pixel Layer 0	3.68	0.643	0.85	
Pixel Layer 1	0.51	0.022	0.51	

Bayesian Neural Network: General structure

Bayesian Neural Network: General structure

Bayesian Neural Network – Point-Prediction network with stochastic weights and biases

• Classification task: based on the (x, y) position assign one of the two classes to an event

- Classification task: based on the (x, y) position assign one of the two classes to an event
- It is clear what we want from a predictor in regions with no overlap

Example of a classification problem with a significant class overlap

Example of a classification problem with a significant class overlap

- Classification task: based on the (x, y) position assign one of the two classes to an event
- It is clear what we want from a predictor in regions with no overlap
- What should the predictor do in the overlap region?
- If no more information is available about the data, one can as well believe whatever predictor infers

9/25

Example of a classification problem with a significant class overlap

- Classification task: based on the (x, y) position assign one of the two classes to an event
- It is clear what we want from a predictor in regions with no overlap
- What should the predictor do in the overlap region?
- If no more information is available about the data, one can as well believe whatever predictor infers
- If know about the data more than we're able to supply to the predictor uncertainty estimation becomes meaningful

- Classification task: infer the number of particles in a cluster (out of 3)
- Significant paramteric overlap between classes
- In LUXE we expect ~3 times more 2-particle clusters than 3-particle clusters and ~4 times more 1-particle clusters than 2-particle clusters

Performance analysis: accuracy and confidence

05.06.2023 Applic

Application of Bayesian Neural Networks to clustering for LUXE experiment

Performance analysis: accuracy and confidence

Correct

Incorrect

Prediction entropy

N particles = 1

N particles = 2

N particles = 3

N particles

0.8

Entropy distribution for 1,2 and 3 particle BNN predictions (left-to-right)

• There's no clear separation in MLE NN entropy distribution

- BNN's entropy distribution allows additional analysis to be employed
- Expected distribution between classes and contamination levels can be leveraged

0.6 0.4

0.8 Prediction entropy

10

40

30 20

Efficiency improvement

- Decision making procedure:
 - 1. Set the decision threshold on the prediction's entropy H_0
 - 2. If for a given 2 or 3 particle prediction $H(\mathbb{P}) < H_0$ proceed with the network's inference
 - If for a given 2 or 3 particle prediction H(ℙ) ≥ H₀ enforce classification as a 2-particle cluster
 - 4. Find the optimal H_0 by observing the efficiency ε on the validation set

Efficiency improvement

- A separate dataset with the distribution of events between cluster classes has been prepared
- Overall efficiency ε_{tot} of 87.24% and combined efficiency for 2 and 3 particle clusters $\varepsilon_{2\cup 3}$ of 74.55% have been achieved on the MLE network
- Thresholded BNN improves required computational time for tracking by \sim 5-10%

BNN's efficiency for different entropy thresholds

H_0	0.65	0.68	0.71	0.74
$\varepsilon_{\mathrm{tot}},\%$	90.22	90.49	90.33	90.07
$\varepsilon_{2\cup 3},\%$	83.27	83.76	83.12	82.52
$\varepsilon_2, \%$	97.14	95.52	93.44	90.64
$\varepsilon_3, \%$	40.63	45.21	49.58	54.58

Efficiency improvement

- Procedure is very crude a lot of room for improvement
- Bernoulli-like decision tree can be implemented
- Distribution of above-threshold-entropy predictions can be accounted for
- More sensitive to the ε_3 criterion of optimal H_0 can be derived
- Architectures with better entropy separation can be searched for

BNN's efficiency for different entropy thresholds

H_0	0.65	0.68	0.71	0.74
$\varepsilon_{\mathrm{tot}},\%$	90.22	90.49	90.33	90.07
$\varepsilon_{2\cup 3},\%$	83.27	83.76	83.12	82.52
$\varepsilon_2, \%$	97.14	95.52	93.44	90.64
$\varepsilon_3, \%$	40.63	45.21	49.58	54.58

Summary

- Cluster merging causes track reconstruction issues. Clustering algorithm is required to perform over high range of occupancies
- MLE and Bayesian Neural Networks are applied to clustering
- Accuracies of \sim 93%, \sim 70% and \sim 75% are achieved for 1, 2 and 3-particle events respectively for both networks
- BNN's predictions allow for meaningful uncertainty estimation
- Ad-hoc procedure of alternative decision making has shown promising performance

Backup: detailed observables investigation (1)

N particles = 1

N particles = 2

N particles = 3

12

N particles - 1

N particles = 2

N particles = 3

- BNN detects geometrical features
- Errors happen in regions of parametric overlap
- Better entropy separation requires architecture modifications

Backup: detailed observables investigation (2)

- BNN detects spatial features
- Higher multiplicity events are badly separated – additional parametrs, more complex network

Backup: detailed observables investigation (3)

Percentage of area filled with active pixels over cluster's dimension rectangle

05.06.2023

Backup: SVI

21/25

Backup: Boosted BBVI (1)

- SVI depends on our assumption about the true posterior shape
- Due to high-variance gradients, it is hard to approximate multimodality by fitting a mixture
- Boosted BBVI algorithm:
 - 1. Find initial approximation by maximixing ELBO
 - 2. Fix initial approximation parameters

Backup: Boosted BBVI (2)

- SVI depends on our assumption about the true posterior shape
- Due to high-variance gradients, it is hard to approximate multimodality by fitting a mixture
- Boosted BBVI algorithm:
 - 1. Find initial approximation by maximixing ELBO
 - 2. Fix initial approximation parameters
 - 3. Take next approximation component and construct a mixture
 - 4. Optimize added component parameters by maximixing rELBO

ELBO: approximation step has to be close to the posterior

rELBO:
$$\mathcal{L}'(\mathbb{Q}) = \underbrace{\mathbb{E}_{\theta \sim q_{\phi}^{(t+1)}}\left[\log\left(\frac{\mathbb{P}(\mathcal{D}, \theta)}{q_{\phi}^{(t+1)}(\theta)}\right)\right]}_{-\underbrace{\mathbb{E}_{\theta \sim q_{\phi}^{(t+1)}}\left[\log\mathbb{Q}_{\phi}^{(t)}(\theta)\right]}$$

residual: but not too close to the previous approximation step

Backup: additional BNN motivation

Backup: BNN realization

- Data: Geant4 full physical simulation. Allpix2 digitazation
- Network: three fully connected ReLU layers
- Inputs: 7×7 matrix with active pixels, cluster position within tracker
- Weights: Laplace prior; Biases: Normal prior;
- Approx. posterior: Laplace distribution

Generated cluster

Cluster

position

dy = dy

285

284

283

281

280

279

dx

785.1 0.9

281.9

1 492 0.8

0.7

0.6

0.5

0.4

0.3 0.2

0.1

Std Dev x 1.492 Std Dev y 1.237