
Application of Bayesian Neural Networks to
clustering for LUXE experiment

Roman Urmanov

05.06.2023

05.06.2023 Application of Bayesian Neural Networks to clustering for LUXE experiment Roman Urmanov 1/25



Introduction: Tracker
Tracker setup
(e-laser mode)

Dipole
magnet

Vacuum
chamber

Tracker mount

e+arm –×8 Staves

ALPIDE: MAP Sensor

1024×512 matrix
of 27x29 µm2 pixels

Stave –×9 ALPIDEs

Track reconstruction
Physics analysis
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Clustering: ML motivation

Event 1

Event 2

“Hit”

Binary “hit/no hit”
readout

“Pac-Man”: adjacent hits combined into
clusters. Cluster’s “center of mass” is
taken for track inference

Hit density at ξ=7

• LUXE will work in a wide range of
pixel occupancies

• Binary output – no information
on number of particles

• “Pac-Man” – up to ≲104 e per BX

• Up to 3×105 e per BX in later stages

Detector
reference

Hit density [mm−2]
MCD ATLAS ITk ALICE ITS3

Pixel Layer 0 3.68 0.643 0.85
Pixel Layer 1 0.51 0.022 0.51
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Bayesian Neural Network: General structure

D = {(x,y)}N :

x – vector of inputs
y – vector of labels;

Set of inputs
and labels

Deterministic
weights and biases θ

P
(
[.]
∣∣θ) – data model

expressed as Likelihood

MLE Neural Network

P
(
D
∣∣θ′
)
:

θ
′
= arg max

θ
P
(
D
∣∣θ)

Maximized likelihood

P
(
x̃
∣∣θ′
)
:

θ
′
= arg max

θ
P
(
D
∣∣θ)

Point-prediction

x̃ – unlabeled data
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Bayesian Neural Network: General structure

D = {(x,y)}N :

x – vector of inputs
y – vector of labels;

Set of inputs
and labels

Deterministic
weights and biases θ

P (θ) – Prior dist. of
weights and biases

P
(
[.]
∣∣θ) – data model

expressed as Likelihood

MLE Neural Network

Bayesian Neural
Network

P
(
D
∣∣θ′
)
:

θ
′
= arg max

θ
P
(
D
∣∣θ)

Maximized likelihood

P
(
x̃
∣∣θ′
)
:

θ
′
= arg max

θ
P
(
D
∣∣θ)

Point-prediction

P
(
θ
∣∣D) =

P
(
D
∣∣θ) P (θ)

P (D)

Posterior distribution of
weights and biases

x̃ – unlabeled data

P
(
x̃
∣∣D) =

∫
dθP

(
x̃
∣∣θ) P (θ∣∣D)

Posterior
predictive distribution

• Bayesian Neural Network – Point-Prediction network with stochastic weights and biases
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Bayesian Neural Networks: Motivation

θ
′
= arg max

θ
P
(
D
∣∣θ)

p (θ)

θ

P
(
θ
∣∣D)

θ

P
(
x̃
∣∣D)

x̃

Point MLE – underestimates
uncertainty

Posterior – full distribution
available for
uncertainty inference

Lack of uncertainty
information leads
to overconfidence

Predictive distributions for the unlabeled data

MLE

Posterior predictive
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Bayesian Neural Networks: Motivation

Example of a classification problem with a
significant class overlap

• Classification task: based on the (x, y)
position assign one of the two classes
to an event
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Bayesian Neural Networks: Motivation

Example of a classification problem with a
significant class overlap

• Classification task: based on the (x, y)
position assign one of the two classes
to an event

• It is clear what we want from a predictor
in regions with no overlap
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Bayesian Neural Networks: Motivation

Example of a classification problem with a
significant class overlap

How predictor should
behave here?

• Classification task: based on the (x, y)
position assign one of the two classes
to an event

• It is clear what we want from a predictor
in regions with no overlap

•What should the predictor do in the
overlap region?

• If no more information is available about
the data, one can as well believe
whatever predictor infers
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Bayesian Neural Networks: Motivation

Example of a classification problem with a
significant class overlap

How predictor should
behave here?

• Classification task: based on the (x, y)
position assign one of the two classes
to an event

• It is clear what we want from a predictor
in regions with no overlap

•What should the predictor do in the
overlap region?

• If no more information is available about
the data, one can as well believe
whatever predictor infers

• If know about the data more than we’re able to
supply to the predictor uncertainty
estimation becomes meaningful
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Bayesian Neural Networks: Motivation

Cluster size = 11

Cluster
position

dx

dy

Generated cluster

Cluster dx distribution Cluster dy distribution

Cluster size distribution

N particles per cluster distribution

• Classification task: infer the
number of particles in a cluster
(out of 3)

• Significant paramteric overlap
between classes

• In LUXE we expect ∼3 times more
2-particle clusters than 3-particle
clusters and ∼4 times more
1-particle clusters than 2-particle
clusters
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Performance analysis: accuracy and confidence
Entropy distribution for 1,2 and 3 particle BNN predictions (left-to-right)

Entropy distribution for
2-particle MLE NN
predictions

• Prediction: C′
= arg max

C
P
(
x̃
∣∣D)

, C ∈ {1, 2, 3}

• Distribution’s entropy: H(P) = −
∑
n

Pn log (Pn)

• H(P) = 0 ⇐⇒ F = {1, 0, 0}

H(P) → max ⇐⇒ P =
{

1
3 ,

1
3 ,

1
3

}
Performance: Efficiency BNN,% MLE NN,%

ε1 93.41 92.69
ε2 73.89 75.13
ε3 67.38 66.63
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Performance analysis: accuracy and confidence
Entropy distribution for 1,2 and 3 particle BNN predictions (left-to-right)

Entropy distribution for
2-particle MLE NN
predictions

Contamination of misclassified
events

• There’s no clear separation in
MLE NN entropy distribution

• BNN’s entropy distribution allows
additional analysis to be employed

• Expected distribution between classes
and contamination levels can be
leveraged
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Efficiency improvement

Example of the entropy-thresholded decision
making process

Believe the
low-entropy
prediction

Discard and
predict as
2-particle

• Decision making procedure:

1. Set the decision threshold on
the prediction’s entropyH0

2. If for a given 2 or 3 particle
predictionH(P) < H0 proceed
with the network’s inference

3. If for a given 2 or 3 particle
predictionH(P) ≥ H0 enforce
classification as a 2-particle cluster

4. Find the optimalH0 by observing the
efficiency ε on the validation set
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Efficiency improvement

Example of the entropy-thresholded decision
making process

Believe the
low-entropy
prediction

Discard and
predict as
2-particle

• A separate dataset with the
distribution of events between cluster
classes has been prepared

• Overall efficiency εtot of 87.24% and
combined efficiency for 2 and 3 particle
clusters ε2∪3 of 74.55% have been
achieved on the MLE network

• Thresholded BNN improves required
computational time for tracking by∼5-10%

BNN’s efficiency for different
entropy thresholds

H0 0.65 0.68 0.71 0.74
εtot, % 90.22 90.49 90.33 90.07
ε2∪3, % 83.27 83.76 83.12 82.52
ε2, % 97.14 95.52 93.44 90.64
ε3, % 40.63 45.21 49.58 54.58
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Efficiency improvement

Example of the entropy-thresholded decision
making process

Believe the
low-entropy
prediction

Discard and
predict as
2-particle

• Procedure is very crude – a lot of room
for improvement

• Bernoulli-like decision tree can be implemented

• Distribution of above-threshold-entropy
predictions can be accounted for

•More sensitive to the ε3 criterion of optimal
H0 can be derived

• Architectures with better entropy separation
can be searched for

BNN’s efficiency for different
entropy thresholds

H0 0.65 0.68 0.71 0.74
εtot, % 90.22 90.49 90.33 90.07
ε2∪3, % 83.27 83.76 83.12 82.52
ε2, % 97.14 95.52 93.44 90.64
ε3, % 40.63 45.21 49.58 54.58
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Summary

• Cluster merging causes track reconstruction issues. Clustering
algorithm is required to perform over high range of occupancies

• MLE and Bayesian Neural Networks are applied to clustering

• Accuracies of ∼93%, ∼70% and ∼75% are achieved for 1, 2 and
3-particle events respectively for both networks

• BNN’s predictions allow for meaningful uncertainty estimation

• Ad-hoc procedure of alternative decision making has shown
promising performance
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Backup: detailed observables investigation (1)

Cluster size for correct and
misclassified predictions

Correctly classified – visible
class separation

Correctly classified – visible
class separation

Misclassified – visible
class overlap

Misclassified – visible
class overlap

Cluster dx for correct and
misclassified predictions

Cluster size = 11

Cluster
position

dx

dy

• BNN detects geometrical features

• Errors happen in regions of
parametric overlap

• Better entropy separation
requires architecture modifications
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Backup: detailed observables investigation (2)

Cluster size = 11

Cluster
position

dx

dy

Cluster position distribution for correct (top)
and misclassified (bottom) predictions

Event concentration

• BNN detects spatial features

• Higher multiplicity events are badly
separated – additional parametrs,
more complex network
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Backup: detailed observables investigation (3)

Percentage of area filled with active pixels over cluster’s dimension rectangle
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Backup: SVI

• Predictions are Posterior-based.
Have to infer P

(
θ
∣∣D)

•MC methods are usually inefficient due
to high dimensionality

• SVI – approximate + high variance gradients

Approximating true
posterior by a simpler
distribution

Optimizing distance
between
distributions

Optimized approximate
posterior captures
behaviour of true
posterior

θ

P
(
θ
∣∣D)

Qϕ (θ)

θ

P
(
θ
∣∣D)

Qϕ (θ)

θ

P
(
θ
∣∣D)

Qϕ (θ)

Simple approximate posterior Qϕ (θ)

KL divergence:

DKL
(
Qϕ (θ)

∣∣∣∣P (θ∣∣D)) = Eθ∼Qϕ(θ)

[
log

(
Qϕ (θ)

P
(
θ
∣∣D)

)]
DKL

(
Qϕ (θ)

∣∣∣∣P (θ∣∣D))→ min
ϕ

↑
unknown

Evidence Lower Bound (ELBO): BNN output
↓

L (Q) = Eθ∼Qϕ(θ)

[
log

(
P
(
D
∣∣θ) P (θ)

Qϕ (θ)

)]

L (Q) = log P (D) − DKL
(
Qϕ (θ)

∣∣∣∣P (θ∣∣D))→ max
ϕ
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Backup: Boosted BBVI (1)

• SVI depends on our assumption about
the true posterior shape

• Due to high-variance gradients, it is hard
to approximate multimodality by fitting a mixture

• Boosted BBVI algorithm:
1. Find initial approximation by maximixing ELBO
2. Fix initial approximation parameters

Posterior may be
multimodal

ELBO optimization
will find the
dominant peak

Secondary peaks
may be non-negligible

θ

P
(
θ
∣∣D)

Qϕ (θ)

θ

P
(
θ
∣∣D)

Qϕ (θ)

θ

P
(
θ
∣∣D)

Qϕ (θ)
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Backup: Boosted BBVI (2)

• SVI depends on our assumption about
the true posterior shape

• Due to high-variance gradients, it is hard
to approximate multimodality by fitting a mixture

• Boosted BBVI algorithm:
1. Find initial approximation by maximixing ELBO
2. Fix initial approximation parameters
3. Take next approximation component

and construct a mixture
4. Optimize added component parameters

by maximixing rELBO

Fix initial approximation
and add new component

rELBO acts as a repulsive
potential around initial
approximation

Mixture is able to fit
more complex structures

θ

P
(
θ
∣∣D)

Q(t)
ϕ (θ)

q
(t+1)
ϕ (θ)

θ

P
(
θ
∣∣D)

Q(t)
ϕ (θ)

q
(t+1)
ϕ (θ)

θ

P
(
θ
∣∣D)

Q(t)
ϕ (θ)

q
(t+1)
ϕ (θ)

rELBO: L′
(Q) = E

θ∼q
(t+1)
ϕ

log
 P (D, θ)

q
(t+1)
ϕ (θ)

−
−E

θ∼q
(t+1)
ϕ

[
logQ(t)

ϕ (θ)
]

︷ ︸︸ ︷

︸ ︷︷ ︸

ELBO: approximation step has
to be close to the posterior

residual: but not too close to the
previous approximation step
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Backup: additional BNN motivation

• BNNs are hard to overtrain: P
(
θ
∣∣D)

, while P
(
D
∣∣θ) • BNNs perform better on OOD data

• BNNs are found to be generally
more calibrated

• Bayesian formalizm scales intuitively
to multi-stage problems

↑
Emphasis on
parameters

↓
Emphasis on
data

f (θ) = P
(
θ
∣∣D)

f (θ)

θ

P
(
x̃
∣∣D)

x̃

Posterior – full distribution
available for
uncertainty inference Lack of uncertainty

information leads
to overconfidence

MLE
Ensemble-averaged
Posterior predictive
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Backup: BNN realization

Cluster size = 11

Cluster
position

dx

dy

Generated cluster

Cluster size distribution Cluster dx distribution Cluster dy distribution

• Data: Geant4 full physical simulation. Allpix2 digitazation

• Network: three fully connected ReLU layers

• Inputs: 7×7 matrix with active pixels,
cluster position within tracker

•Weights: Laplace prior; Biases: Normal prior;

• Approx. posterior: Laplace distribution
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