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Clustering: ML motivation

\ \ \ e Binary output — no information

on number of particles
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u }Event 2 pixel occupancies
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Bayesian Neural Network: General structure

MLE Neural Network
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Bayesian Neural Network: General structure

MLE Neural Network
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® Bayesian Neural Network — Point-Prediction network with stochastic weights and biases

ian Neural Netw steri J i man Urmanov 5/25



Bayesian Neural Networks: Motivatio

p(9) Point MLE — underestimates
uncertainty
1
I
I
1 P (|D) ~
1 P D MLE
1
1 ,’ \ |:| Posterior predictive
1 o _ Lack of uncertainty ; 1
0" = argmax P (Dlo) o information leads 4 \
4 to overconfidence ¢, \\\
1
I' 1
P (0|D) Posterior — full distribution ,' 1 \ \\
available for ¢ 1 1 \
uncertainty inference Vs /] \ \
/ Vi \ Y
’ /4 A
PR So oSN, &
Predictive distributions for the unlabeled data
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o Classification task: based on the (z, y)

position assign one of the two classes

to an event

Example of a classification problem with a

significant class overlap
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Bayesian Neural Networks: Motivation

> o Classification task: based on the (z, y)
position assign one of the two classes
to an event

o It is clear what we want from a predictor
in regions with no overlap

-1 -0.5 0 0.5 1

Example of a classification problem with a
significant class overlap
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esian Neural Networks: Motivation
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Example of a classification problem with a
significant class overlap

n Neural Netv

o Classification task: based on the (z, y)

position assign one of the two classes
to an event

o It is clear what we want from a predictor
in regions with no overlap

® What should the predictor do in the
overlap region?

o If no more information is available about
the data, one can as well believe
whatever predictor infers
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esian Neural Networks: Motivation

t; A * How predictor should
° behave here?

-1 -0.5 0 0.5 1

Example of a classification problem with a
significant class overlap
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o Classification task: based on the (z, y)
position assign one of the two classes
to an event

o It is clear what we want from a predictor
in regions with no overlap

® What should the predictor do in the
overlap region?

o If no more information is available about
the data, one can as well believe
whatever predictor infers

e If know about the data more than we’re able to
supply to the predictor uncertainty
estimation becomes meaningful
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300
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150 ‘
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Performance analysis: accuracy and confidence

Entropy distribution for 1,2 and 3 particle BNN predictions (left-to-right)
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10 JJJJ =
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Entropy distribution for 1,2 and 3 particle BNN predictions (left-to-right)
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£ g A
& % [ paris -2 MLE NN entropy distribution
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Efficiency improvement

g 70 . ® Decision making procedure:
E Believe the D Correct
w o ;;’r‘;’c'l‘;;‘tti';‘;lpy < 1. Set the decision threshold on
D Incorrect the prediction’s entropy H
50 2. If for a given 2 or 3 particle
prediction H(P) < Hy proceed
Discard and with the network’s inference
40 predlc_t as
Z-particle 3. If for a given 2 or 3 particle
0 prediction H(P) > H, enforce
classification as a 2-particle cluster
20 4. Find the optimal H by observing the
efficiency ¢ on the validation set
10
0 RN R Yl P2 -
0 0.2 04 0.6

1 1.2
Prediction entropy
Example of the entropy-thresholded decision

making process
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Efficiency improvement

70

8 Believe th ® A separate dataset with the
= elieve the . . .
g low-entropy < D Correct distribution of events between cluster
60 prediction classes has been prepared
D Incorrect )
e Overall efficiency €, of 87.24% and
50 combined efficiency for 2 and 3 particle
Discard and clusters €53 of 74.55% have been
40 predict as achieved on the MLE network
2-particle
@ Thresholded BNN improves required
30 computational time for tracking by ~5-10%
20
BNN’s efficiency for different
10 entropy thresholds
9 H, 0.65 0.68 0.71 0.74
n L Ml [l el I I ho
% 02 0.4 06 5 Etors Y0 90.22 | 90.49 | 90.33 90.07

8 1 1.
Prediction entropy €203, % | 83.27 | 83.76 | 83.12 | 82.52
Example of the entropy-thresholded decision

making process

€a, % 97.14 | 95.52 | 93.44 | 90.64
€3, % 40.63 | 4521 | 49.58 | 54.58
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Efficiency improvement

g 70 . ® Procedure is very crude — a lot of room
= Believe the Correct .
5 low-entropy < for improvement
60 prediction C . .. .
D Incorrect o Bernoulli-like decision tree can be implemented
50 e Distribution of above-threshold-entropy
predictions can be accounted for
Discard and . L .
40 predict as @ More sensitive to the €3 criterion of optimal
Z-particle H, can be derived
30 e Architectures with better entropy separation
can be searched for
20
BNN’s efficiency for different
10 entropy thresholds
9 H, 0.65 0.68 0.71 0.74
n L Ml [l el I I ho
% 02 0.4 06 Etors Y0 90.22 | 90.49 | 90.33 90.07

8 1 1.2
Prediction entropy €203, % | 83.27 | 83.76 | 83.12 | 82.52
Example of the entropy-thresholded decision

making process

€a, % 97.14 | 95.52 | 93.44 | 90.64
€3, % 40.63 | 4521 | 49.58 | 54.58
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e Cluster merging causes track reconstruction issues. Clustering
algorithm is required to perform over high range of occupancies

e MLE and Bayesian Neural Networks are applied to clustering

e Accuracies of ~93%, ~70% and ~75% are achieved for 1, 2 and
3-particle events respectively for both networks

e BNN’s predictions allow for meaningful uncertainty estimation

e Ad-hoc procedure of alternative decision making has shown
promising performance
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Backup: detailed
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g [Jnparces-1 | 8 [N parcts -1
& & 100 .
° [ parices -2 [[Inprices-2 - @ BNN detects geometrical features
80 N particles = 3 N particles = 3
70 &) e Errors happen in regions of
Misclassified — visible Misclassified — visible .
60 class overlap class overlap parametrlc 0verlap
60 F
50 .
‘ @ Better entropy separation
40, . . . .
© “ requires architecture modifications

0 2 4 6 8 10 12 14
Cluster dx, N pixels

Cluster size for correct and Cluster dx for correct and
misclassified predictions misclassified predictions
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ackup: detailed

. N |
> 500 . . 1 _ 5’ Entries. "
H - Event concentration I N particles =1 g ) seae 70510 6
z . . B N particles = 2 s Cluster size = 11 Meany 2818
w0t i S [ N particles = 3 SDevx 1402 |08
' % . P . e . . 284 Cluster StdDevy 1237 07
position N
283 0.6
0.5
282 dy
0.4
281 0.3
280 0.2
dx 0.1

5 200 400 800 800 7000 72 783 7ok 785 785 767 T8 769 70D
N pixel, x i,
3 Il N particles = 1
2 . I N particles = 2 @ BNN detects spatial features
400 —* s . 0 N particles = 3 ) o
. . e Higher multiplicity events are badly

separated — additional parametrs,
more complex network

00 * 200 400 600 800
Cluster position distribution for correct (top)
and misclassified (bottom) predictions
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Backup: detailed

2500
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£ ]
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Backup: SVI

WP (6|D)
mQ, ()

Approximating true
posterior by a simpler
distribution

@ Predictions are Posterior-based.
Have to infer P (0|D)

® MC methods are usually inefficient due
to high dimensionality

@ SVI — approximate + high variance gradients

posterior

n Neural Netv

2 Simple approximate posterior Qg (8)
WP (6|D) Optimizing distance
.Qd’ (8) between
distributions
KL divergence:
Qq (6)
Dy (Qq (6) ||P (6|D)) = Eo~q,(6) {log <]P (6]D)
Dy (Qg (6) ||P (6|D)) — min '
0 @ unknown
WP (6|D) Optimized approximate
.@¢ (8) posterior captures
behaviour of true BNN output

Evidence Lower Bound (ELBO):

P (D|6) P (9))}

L(Q) =Eo~q, (o) [log ( )

£(Q) = logP (D) — D (Qy (0) [P (6]D)) — max
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Backup: Boosted BBVI (1)

WP (o|D)

Posterior may be @ SVI depends on our assumption about
mo, ()

multimodal the true posterior shape

@ Due to high-variance gradients, it is hard
to approximate multimodality by fitting a mixture

@ Boosted BBVI algorithm:
o 1. Find initial approximation by maximixing ELBO
2. Fix initial approximation parameters

Wr (o|D) ELBO optimization
o, (8) will find the
dominant peak

WP (6|D) Secondary peaks
Hao, (6) may be non-negligible
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Backup: Boosted BBVI (2)

WP (8|D)
may’ (8)
Wai " (6)

Fix initial approximation ~ ® SVI depends on our assumption about
and add new component the true posterior shape

@ Due to high-variance gradients, it is hard
to approximate multimodality by fitting a mixture

@ Boosted BBVI algorithm:
1. Find initial approximation by maximixing ELBO

o
2. Fix initial approximation parameters
me ((f‘D) YELBO acts as a repulsive 3 Tyke next approximation component
e’ (6) potential around initial .
.qg-l) (9) approximation and construct a mixture
4. Optimize added component parameters
by maximixing rELBO

ELBO: approximation step has
to be close to the posterior

WP (6|D) Mixture is able to fit
moY (o) more complex structures , } P(D,0)

(1) rELBO: £ (Q) =E,  «iv |log | ——— | | —
Wa, " (6) 0~q, qf;“) ()

—ngqg“; [log Qg) (0)]

residual: but not too close to the

N e previous approximation step
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Backup: additional BNN motivation

Emphasis on
data

® BNNs are hard to overtrain: P (9|D), while P (D!B)

Emphasis on
parameters

f(6) Posterior — full distribution
available for

uncertainty inference

f(8) =P (8|D)

n Neural Netv

® BNNs perform better on OOD data

® BNNs are found to be generally
more calibrated

@ Bayesian formalizm scales intuitively
to multi-stage problems

? (/D) ~

\
Lack of uncertainty : 1
information leads \
to overconfidence I )
Iy o
Iy 11N
4 ! R\

[CIMLE

[C]Ensemble-averaged
[[JPosterior predictive
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Backup: BNN realizat

Generated cluster

e Data: Geant4 full physical simulation. Allpix2 digitazation Z o0 ewies 11!
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o Network: three fully connected ReLU layers sdovx 1asz |08
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