10TeV Muon Collider Detector Meeting

Micah Hillman

University of Tennesseee, Knoxville

Understanding ECal. Energy Deposits

Minimum-Energy Thresholding

- Data in /collab/project/snowmass21/data/ muonc/fmeloni/DataMuC_MuColl10_v0A/ photonGun_1000/reco_k4.
- Last time talked about time-structure of digitized hits in ECal.
- Investigated the effect of setting a minimumenergy threshold.
- Want to understand further how consistent this energy deposit structure is.
 - If reasonably consistent event-to-event, then losing energy to the cut will pose less of a challenge to reconstruction.

Fig. 1. Energy retention as a function of mimimum energy threshold for a single signal photon.

Minimum-Energy Thresholding

- Data in /collab/project/snowmass21/data/ muonc/fmeloni/DataMuC_MuColl10_v0A/ photonGun_1000/reco_k4.
- Need insight into the distinction between these two branches.

Fig. 2. Energy collection displayed for two branches, ECalBarrelCollection.energy and ECALBarrel.energy.

Moving Forward

- How do the average cell energies for the BIB itself compare to these thresholds?
 - understand average cell energy output in presence of BIB.
- time-dependent reduction methods?

• Need to find out how many cells are outputting data using BIB samples to

Would thresholding energy reduce BIB sufficiently, or do we need to explore