SRF Regional Report (Americas) *H. Padamsee*

- Many thanks to
 - Mark Champion, Tug Arkan, Elvin Harms,
 Camille Ginsburg, N. Solyak, Genfa Wu, Joe
 Ozelis, A. Mukherjee, M. Kelly, Rongli Geng,
 Peter Kneisel, C. Reece, T. Tajima, R.Laxdal

Outline

- Status of infrastructure installations (FNAL, ANL)
- SRF R&D for ILC S0/S1 (Jlab, Cornell)
 - + New vendor qualification
- Large Grain 9-cell first results (Jlab)
- 3rd Harmonic Status (FNAL)
- ERL Injector work at Cornell
- Newcomer TRIUMF
- CEBAF Upgrade and SNS covered in separate talks

Argonne EP Commissioned with One-Cell

Cornell HPR System Designed and Under Construction (FNAL)

Fermilab CM Assembly

Cryomodule Assembly with DESY Assistance

String Assembly with DESY Cavities

Comments on CM Assembly

- String assembly 10 days
- Cold mass assembly 14 days
- Cold mass transported to CM assembly building
- CAF-MP9 to CAF-ICB
- CM assembly complete
- CM assembly infrastructure now fully operational
- Second cold mass assembly fixture installed at CAF-ICB.

Fermilab: Vertical Test Set Up Complete 1st 9-cell Cavity Test Result

9-cell EP and Vertical Tests

Jlab

- Achieved 30 cycles of EP/VT per year.
- Post-EP ultrasonic cleaning with "soap" always used.
- A6 and A7 processed 4 cycles for ILC S0/S1.
- A8 started on S0 tight loop
- KEK ICHIRO 5 cavity testing started
- New vendor cavities evaluation AES 1 4

Cornell

- One cycle per month
- Post-EP ultrasonic cleaning with "soap" always used.
- A8 and A9 qualified for quench ≥ 25 MV/m
- A8 sent to Jlab for tight S0 tight loop
- A9 started micro-EP (5 microns) to study effect on quench
- 9-cell re-entrant cavity work started
- New vendor AES (new beam welder) 1-cell cavity rapid qualification

9-cell Test Results Mostly Jlab and Some Cornell

Best 9-cell cavity gradient results

- 4 cavities (A6, A7, A8, AES2) best gradients of 31-42 MV/m.
 Quench limit sensitive to re-processing.
- 2 cavities (AES4, ICHIRO5) reached gradient of 28-30 MV/m. Field emission limit.
- 2 cavities (AES1, AES3) reached gradient of 19-21 MV/m.
 Quench limit insensitive to re-processing
- Pass-band & Thermometry to locate defect.
- AES 3 defect is in cell 6
 - Near, but outside equator weld
- AES 1 sent to FNAL to qualify VTS, quench located
 - Quench in cell #3
 - Near, but outside equator weld
 - AES 1 sent to KEK for optical microscopy (shown in WG2)

Jlab Study: Quench Behavior With Material Removal (More in WG1)

- 3 Cavities: Quench limit gradient improves with more material removal (e.g. 20μm)
 - A6 test 3 to 4: 25 MV/m => at least 38 MV/m.
 - A7 test 1 to 2: 29 MV/m => 42 MV/m.
 - AES2 test 2 to 3 to 4: 18 MV/m => 26 MV/m => 33 MV/m.
- 2 Cavities: Quench limit gradient deteriorates with 20 micron material removal.
 - A6 test 2 to 3: 29 MV/m => 25 MV/m.
 - A7 test 2 to 3: 42 MV/m => 30 MV/m.

Thermometry Efforts to Localize Quench

- Fermilab/Jlab
- Add few Cernox thermometers around equator
- Fermilab: One cell covered with thermometers under development
- Jlab, complete one-cell coverage

Fermilab: Cavity Thermometry

* 1-cell prototype was made and the fixture was cold tested (shock)

successfully Model of half cage assembly

1-cell prototype

Readout cables for all 960 sensors

Jlab One Cell Thermometry Assembly

9-cell cavity assembly

LANL 9-cell T-map System

- each PCB covers 3 cells
- 108 boards cover the cavity every 10 degrees
- expected scanning time
 is ~2 seconds.

New Vendor Development Continued AES New Beam Welder: Rapid Qualification 5 Single Cells, 110 mm BCP, HPR 2 hrs

- Cornell/FNAL collaboration
- BCP and Tests carried out at Cornell
- 4 of 5 cavities reached 25 MV/m without quench
 - limited by high field Q-slope
- 1 of 5 cavities reached 17 MV/m limited by field emission
- AES new beam welder is qualified

Single Cells, Large Grain

Reproducibility Tests: Summary

Ningxia

• In – situ baking at 120C for 12 hrs eliminates the Q-drop

9-cell Cavity performance(Jlab)

Large Grain

- Two 9-cell cavities (LG#1,LG#2) were fabricated at Jlab from large grain CBMM niobium (ingot"D"); several holes during EBW in both cavities
- Standard processing:pre-tuning, 100 micron bcp,hydrogen degassing at 600C for 10 hrs,final tuning, final bcp
- LG #1 received only \sim 40 micron, LG#2 \sim 57 micron bcp in final bcp
- LG#1: quench at Eacc = 23 MV/m,
- LG#2: quench at Eacc = 20 MV/m

Reproducibility Tests(3)

Heraeus Nb, LL shape

LL Single cell cavities, Heraeus Nb, inner cell geometry

Caution: MP in ILC HOM coupler: leg-wall gap

Third Harmonic Effort FNAL

Status

- 8 cavities have been fabricated
 - 5 have had at least one vertical test
 - Cavity #7 being prepped for first test
- 2 cavities welded into Helium vessels
 - One prototype fitted into Horizontal Test Stand, cooled to 1.8K and low power tested (10 kW)
 - · Cavity #5 ready for Horizontal Test within 2 weeks
 - · Remaining vessels due in few weeks
 - · Two cavities ready to be welded into vessels
- One pair of couplers trimmed to proper length have been conditioned
 - 2nd pair to be readied after Cavity #5 Horizontal Test
- All test areas commissioned and operational
- Shipping/Transport studies and preparations in progress and reviewed

Future

- •Building up a queue of cavities to be welded into helium vessels
- •Cavity string assembly could begin in late March
- •Plan to ship module late spring/early summer

Cavity #1 dressed for HTS commissioning October 2007 Cornell ERL Injector, 2-cell Cavity Assembly: He Vessel, Blade Tuner, Two Input Couplers, Ferrite HOM Absorbers

Horizontal Test Cryostat for One Cavity

- Design specs:
 - cw operation, 5 MV/m at 100 mA, and 15 MV/m at 33 mA
- $Q = 10^{10}$ at 2 K

Finished Test Cryomodule

Results

- CM design, and assembly procedures OK,
- 1.8 K cw operation possible
- CW operation: E_{max} = 9.5 MV/m,
 - limited by power dissipation at Q = 1.5 10⁹.
- Pulsed: Emax = 13 MV/m

- After disassembly found
- Two ferrite tiles detached and dropped on beam pipe during cool down from large HOM
- Mismatch stress between large ferrite tile and Cu-W backing plate
- Small particles fell into cavity.
 - After disassembly, only HPR rinse restored cavity Q₀ > 10¹⁰, as desired.
- Need to find better match for ferrite, copper-tungsten bond.
- OR better stress-relief (smaller tiles)

5-Cavity String Assembled

Replace mismatched tiles with better matched tiles in large HOM load.

String on Helium Gas Return Pipe Test Anticipated April 2008

TRIUMF and Electrons

- Pursuing funding for a 50MeV e-linac as a Rare Isotope Beam (RIB) driver
- Qualify PAVAC as North American vendor for ILC cavities
- TRIUMF is prototyping two bulk niobium quarter wave cavities with PAVAC

SRF@TRIUMF: Infrastructure

PAVAC:

Local Fabricator

- Who is PAVAC?
 - A Canadian Company located in Richmond B.C.
- Specializing in
 - Electron Beam Welding
 - Pulsed Electron Beam Drilling and Surface-Micro Machining
 - Pulsed Electron Beam Coating (PEB-PVD)
- Presently fabricating two β=0.11 prototype cavities for testing by year end

Forming and Machining

EB Welding

Pre-weld Etching - TRIUMF

`Recent Progress in the SRF Program at TRIUMF/ISAC', Bob Laxdal, SRF2007, Oct. 15, 2007

Conclusions

- Major progress in
 - Infrastructure installation
 - One TTF cryomodule completed
 - More than 50 9-cell cavity prep/tests completed
- AES vendor prospects improving
- New projects based on TESLA technology coming on line.
- Basic R&D activities at Jlab on Field emission, Sulphur particles and Cornell, some to be reported during WGs.