

Experience with the cold test data analysis using the DESY cavity data base

Detlef Reschke TTC Meeting, DESY Jan 2008

Introduction

- Available analysed data on quench fields:
 - i) AC-Cavities of 3rd production:
 - ii) Z-cavities of 4th production:
 - iii) Large Grain AC112 AC114:
 - iv) 6th production:

```
?
yes (status of SRF 2007 poster)
new
new, but only 2 cavities tested
```


2

AC-cavities of 3rd production

Quick and dirty analysis only:

-

Z-cavities of 4th production

- Status of SRF 2007 paper still valid
- Vertical test results of 27 (out of 30) cavities analysed
- Final preparation by EP w/o ethanol, EP w ethanol and "Flash-BCP" after previous main EP

Z-cavities of 4th production (ctd.)

Detlef Reschke, DESY Event, 17/01/2008

C

HELMHOLTZ

GEMEINSCHAFT

Quench analysis

- Distinguish between local thermal breakdown, FE induced quench, MP,...?
- Distinguish between material defect and fabrication problem
 => T-map required!!
- Late decision to analyze all low-gradient cavities with T-Map !
 => no T-Map data available for
 e.g. Z86 (24 MV/m), Z88 (23 MV/m, strong FE), Z97 (24 / 26 MV/m)
 (again: some cavities with good performance after re-treatment)
- All tests after new prep analysed !!! => double or triple counting possible
- Four categories for analysis independent of preparation:
 i) Identified Quench by T-Map at equator => fabrication fault probable
 ii) Identified Quench by T-Map off the equator (or unclear)
 => material problem, FE, ...
 - iii) Quench w/o FE (no T-Map)
 - iv) Quench with FE (no T-Map)

Quench analysis II

17.01.2008

Quench locations of Z-cavities

Cavity	Gradient	Quench location	Preparation + remark
Z82, test 2	28 MV/m	cell 9, <mark>equator</mark>	EP + 127C; no FE
Z83, test 2	25 MV/m	cell 1 with two hot areas i) equator; ii) upper cup	EP + 127C; no FE
Z85, test 2	33MV/m	cell 3, equator area; but highest dT 2 resistors off the equator ??	EP + 124C; some FE
Z87, test 3	33 MV/m	cell 4, lower cup; far off equator	EP; few FE
Z89, test 2	28 MV/m	7/9pi-mode(!): cell 5, lower cup, hot area from equator to iris ??	EP + 120C; some FE
Z94, test 2	28 MV/m	cell 3, upper cup, 3 resistors off the equator	BCP; few FE
Z101, test2	26 MV/m	Cell 7, equator area	EP, some FE
Z104, test 1	20 MV/m	Cell 7, lower cup, far off equator => FE induced	EP, strong FE
Z105, test 6	21 MV/m	Cell 6, lower cup near iris (after degradation)	EP + bake, few FE
Z108, test 2	23 MV/m	Cell 8, upper cup, hot area equator to iris??	EP; no FE
Z110, test 2	14 MV/m	Cell 8, equator + lower cup (3 resistors off equator	EP, no FE
Z111, test 2	16 MV/m	Cell 6, equator	BCP, no FE

Result of Quench analysis

- Note: All cavity tests limited by quench are analyzed !!
 => includes double counting of cavities after reprocessing
- Again: Broad scatter of $E_{acc,max}$ from 15 MV/m to 40 MV/m ! Quench field w/o FE: $\langle E_{acc,max} \rangle = (28,9 \pm 4,3)$ MV/m (w/o Z110 + Z111) Quench field with FE: $\langle E_{acc,max} \rangle = (29,7 \pm 5,6)$ MV/m
- T-Map shows two cavities with probable production fault:
 => Z110 after EP + Z111 after "EP+" with ≈ 15 MV/m
 (Z108 showed unclear T-Map with 23 MV/m; re-processed: 33 MV/m, bd, no FE)
- Two more cavities w/o T-Map with quenches below 24 MV/m: Z86, EP: 24 MV/m (used for blade tuner experiment) (Z93, EP: 23 MV/m (re-processed with E_{acc,max} > 36 MV/m))

Large Grain AC112 – AC114 (5th production)

- 3 large grain nine-cells of Heraeus Nb
- First tests after pure BCP treatment with 120 140 μm removal
- Max. Gradients with quench:
- => AC112 BCP: 30 MV/m AC113 BCP: 27 MV/m AC114 BCP: 27-29 MV/m
- First tests after EP result in disastrous results ????

10

New 6th production

2 fine grain cavities testes up to now1) AC115 w full EP treatment:

2) AC117 w long EP and final 18µm BCP:

39 MV/m quench located off equator max. 31 MV/m w/o quench last 27 MV/m w strong FE (no T-maps)

- AC115: impressive qualification of Plansee/Heraeus Nb (exceeds single-cell results)

11