

Global Cavity Data Analysis for S0 with Application to a Global Database

C.M. Ginsburg (Fermilab) This work was done in collaboration with and on behalf of the ILC GDE S0/S1 Task Force

Tesla Technology Collaboration Meeting DESY Hamburg January 16, 2008

- S0 Task Force
 - Hitoshi Hayano (KEK), Toshiyasu Higo (KEK), Lutz Lilje (DESY), John Mammosser (SNS), Hasan Padamsee (Cornell), Phil Pfund (FNAL), Marc Ross (FNAL), Kenji Saito (KEK), Bill Willis (Columbia), CMG (FNAL)
- DESY, JLab, KEK, (Cornell)
 - Thank you to my colleagues who generously shared their data and expertise
 - special thanks to KEK and DESY for the hospitality
 - An excellent testbed for international collaboration
- I report on my ~one-year experience in S0, with emphasis on which data have been of interest, and how I accessed those data
 - the opinions expressed and the errors introduced are my own

ilc so -

S0 Task Force Goal & Plan

- Goal for cavity performance in vertical test
 - ILC baseline (RDR): E_{acc} & 35 MV/m, Q_0 & 0.8 x 10¹⁰
 - Proof of principle: E_{acc} & 35 MV/m and Q_0 & 10^{10}, with yield
 - > 90% for >100 cycles
- Plan for achieving goal
 - Two steps
 - S0.1: Tight loop to improve "final preparation" yield
 - Process and test few cavities repeatedly; test of processing
 - Basic assumption: cavity preparation is the critical step
 - S0.2: Production-like activities to determine overall yield for cavity materials, fabrication and full cavity processing
 - Process and test batches of 10's of cavities; test of full cycle including fabrication, surface processing, assembly
 - Closely coordinated global execution
 - Reproducibility from lab to lab
 - Complete description of preparation and testing processes
 - Common minimum test procedure and reporting of results
 - Compare regional preparation setup performance
 - Time scale should be commensurate with completion of the EDR

I will show several examples Focus today is on data sharing

R&D on single cells

S0.1: Tight loop to improve "final preparation" yield

Example 1: Comparison of final preparation methods KEK (high-gradient group) data

KEK (high-grad group) process R&D

KEK (high-grad group) process R&D

K. Saito, TTC Meeting at Fermilab, April 2007 and K. Saito, private communication and F. Furuta, private communication

cavity	test status	measurement	cavity treatment	Eacc	Q0 [E10]	x-ray start	FE onset		
		date	includes	[MV/m]		[MV/m]	[MV/m]		
IS#2	quench	11/29/2005	EP(80)	36.90	1.5	24	35		
IS#3	FE	11/21/2005	EP(80)	31.4	0.866	19	25		
IS#4	quench	11/22/2005	EP(80)	45.1	0.907	33	38		
IS#5	quench	11/28/2005	EP(80)	44.2	0.538	20	37		
IS#6	quench	12/12/2005	EP(80)	48.8	0.964	37	no		
IS#7	FE	12/14/2005	EP(80)	28.3	0.194	15	20		
IS#2	quench	4/4/2006	EP(20+3, closed)	47.07	1.06	37	no		
IS#3	quench-FE	4/12/2006	EP(20+3,closed)+HF	44.67	0.98	37	43		
IS#4	quench	4/19/2006	EP(20+3,closed)	47.82	0.78	30	45		
IS#6	quench	1/25/2007	EP(20+3,closed)+HF	48.60	0.80	31	N/A		
IS#7	quench	4/15/2006	EP(20+3,closed)+HF	43.93	1.17	no	no		
CLG#1	quench	1/26/2007	EP(20+3,closed)+HF	47.90	1.0	30	N/A		

Same data, more details

Source: K. Saito TTC@Fermilab April 2007 + F. Furuta, private communication

- "X-ray start" is the gradient at which the x-ray flux above the cryostat top plate exceeds 0.3 μ Sv/hr
- "FE onset" is the gradient at which the FE-loading starts increasing, approximately the shoulder in the Q vs. <u>E curve (more info available if desired)</u>

I can reproduce these histograms (p.5) and did make this table from F. Furuta spreadsheet and private communication

S0.1: Tight loop to improve "final preparation" yield

Example 2: Tight-loop results from already qualified vendors

Only testing the processing DESY and JLab data

JLab: Process reproducibility

J. Mammosser, TTC Meeting at Fermilab, April 2007

- Accel cavities already qualified vendor, same treatment for all cavities
- All curves but one limited by quench; A6 final test limited by FE
- Large distribution of quench gradients with multiple tests of same cavity

A6 First Qualify Test.QPC

IIL

JLab: Process reproducibility

J. Mammosser, TTC Meeting at Fermilab, April 2007

- JLab processing recipe
 - Degrease
 - Electropolishing (20 μm)
 - Degrease
 - First HPR+dry
 - First cleanroom assembly
 - Second HPR+dry
 - Final cleanroom assembly
 - Evacuation and leak check
 - Low temperature (110 C) bake
- RF test at 2K

Summary of 'Already-Qualified' Vendors DESY & JLab Best Test Results

L. Lilje, MAC Meeting at Fermilab, April 2007

IIL

Summary of 'Already-Qualified' Vendors DESY & JLab All Test Results

S0 Production-like Status

S0.2: Production-like activities to determine overall yield for cavity materials, fabrication and full cavity processing

Qualification of new cavity vendors KEK (baseline group) and JLab and Fermilab data

KEK Tesla-style cavities

KEK baseline-gradient group data

- Tesla-style cavities for STF phase 1.0 cryomodule
 - Improved stiffness
 - Larger diameter input coupler port and beamtube
- New cavity vendor: MHI (Mitsubishi Heavy Industries)
- Standard KEK surface treatment
- Results
 - Gradient summary: 20.1 +- 3.6 MV/m
 - Best cavity test 29 MV/m
 - Tighter QC for future production runs will be implemented
 - Mode measurements very useful

E. Kako, priv. comm.

I could reproduce this histogram from my study of KEK baseline-gradient group logbooks

KEK Tesla-style cavities

E. Kako, TTC Meeting at Fermilab, April 2007

Final Performance in Vertical Tests

JLab: qualification of new vendor

IIL

S0 data coordination

Closely coordinated global execution

16.Jan.2008

S0 cavity tracking

The Cavity Report

Cavity_Listing_2007-12-03.xls

Lab	Cavity Name	Current Location	Current Use	Designated Use
FNAL	AES001	enroute to KEK		
FNAL	AES002	at Jlab	Under test	
FNAL	AES003	at Jlab	Under test	
FNAL	AES004	at Jlab	Under test	
FNAL	AC 6	At Jlab	Tested	Dressed, high gradient testing (S1).
FNAL	AC 7	At Jlab	Tested	Dressed, high gradient testing (S1).
FNAL	AC 8	At Jlab	Under test	NML-CM2
FNAL	ACC010	At ACCEL being fabricated.	First tight-loop processing and testing will be at Jlab.	S0 testing
FNAL	ACC011	At ACCEL being fabricated.	First tight-loop processing and testing will be at Jlab.	S0 testing
FNAL	ACC012	At ACCEL being fabricated.	First tight-loop processing and testing will be at Jlab.	S0 testing
FNAL	ACC013	At ACCEL being fabricated.		Production mode processing at Jlab.
FNAL	ACC014	At ACCEL being fabricated.		Production mode processing at Jlab.
FNAL	ACC015	At ACCEL being fabricated.		Production mode processing at Jlab.
FNAL	ACC016	At ACCEL being fabricated.		Production mode processing at Jlab.
FNAL	ACC017	At ACCEL being fabricated.		Production mode processing at Jlab.
FNAL	AES005	At AES being fabricated.	First processing will be at Cornell.	
FNAL	AES006	At AES being fabricated.	First processing will be at Cornell.	
FNAL	AES007	At AES being fabricated.	First processing will be at Cornell.	
FNAL	AES008	At AES being fabricated.	First processing will be at Cornell.	
FNAL	AES009	At ALS being fabricated.	First processing at ANL and testing at Fermilab.	
FNAL	AES010	At AES being fabricated.	First processing at ANL and testing at Fermilab.	
KEK	BL-#1 (KEK Tesla Type #1)	At KEK		STF 1.0
KEK	BL-#2 (KEK Tesla Type #2)	At KEK		STF 1.0
KEK	BL-#3 (KEK Tesla Type #3)	At KEK	STF 0.5	STF 1.0
KEK	BL-#4 (KEK Tesla Type #4)	At KEK		STF 1.0
KEK	BL-#5 (KEK Tesla Type #5)	Being fabricated		S0 testing
KEK	BL-#6 (KEK Tesla Type #6)	Being fabricated		S0 testing
KEK	LL-#0 (Ichiro #0)	At KEK		S0 testing
KEK	LL-#2 (Ichiro #2)	AUNEN		SU testing
KEK	LL-#5 (New Ichiro #5)	At Jlab	S0 testing	STF 1.5
PAL	LL-#6 (New Ichiro #6)	At KEK	S0 testing	STF 1.5
DESY	AC115			S0 testing
DESY	AC118			S0 testing
DESY	AC116			S0 testing

P. Pfund, update December 3, 2007

http://tdserver1.fnal.gov/project/ILC/S0/S0_coord.html Selection showing cavities designated for global swaps; see webpage for complete information

- Goal: define a test procedure which results in a data set comparable among the laboratories
- Due to the significant differences in infrastructures the test procedures differ significantly
- A standard set of data from a vertical, low-power 9-cell cavity test contains
 - A check for hydrogen contamination of the niobium material (Q-disease)
 - Stay at 100K for 8 hours during cooldown; provide temperature vs. time data
 - As this test significantly extends the testing time for some labs, can be omitted once confident that processes do not contaminate niobium with hydrogen
 - Q vs.T measurement for residual resistance
 - All 9 TM010 passband modes measurement
 - Deformation would lead to a unusable information from the passband modes measurement
 - Field flatness data required for proper interpretation
 - Checks of frequency spectrum
 - Quench location: thermometry, mode measurements, x-ray detection etc.
 - Further information to be provided with the data above include
 - Continuous cavity vacuum pumping during test or closed valve; provide pressure data
 - Temperature difference over cavity (top to bottom) during cooldown
 - Method of low-power processing pulsed or cw
 - Coupler type: fixed or variable

if Issues associated with this definition

- KEK and Cornell rely on portable LHe dewars
 - Minimizing test duration and LHe usage are critical
- Only DESY and KEK have variable input couplers (Fermilab soon), which are almost necessary for mode measurements
- Quench location is time consuming, requiring at least two cooldowns: one to localize quench via mode measurements, and one to attach thermometry
 - Current thermometry system assemblies are too time consuming for every test, and frequently only measure one cell
 - except KEK baseline group (see Y. Yamamoto talk)
- Field emission measurement numerically not comparable among test stands
 - Different amounts of material between cavity and detector
 - Different locations of detector with respect to cavity
 - Different detectors with different acceptance for different energies and different trigger time window
 - KEK baseline group photodiode array maybe more comparable (see Y. Yamamoto talk)
- Only DESY has a publicly available data management system
 - Still not everything desirable is available
 - Rely on experimental groups to provide results

S0 data coordination

Global data analysis:

Example 1: Quench gradient development as a function of material removal

Example 2: From mode measurements,

determine whether any cells showed a statistically higher probability to cause cavity breakdown (quench) than others

DESY and KEK data

- Study quench gradient development as a function of material removal
- Dataset: DESY/TTF vertical test data from cavity Production Batches 3 (split) and 4
 - Production 3a: BCP
 - Production 3b: other
 - Production 4: mostly EP
 - 9-cell cavities only
 - Removed material thickness is estimated from processes
- Underlying assumption: all cavities are equivalent, and only variable of interest is material removal
 - A data point is one test-process-test cycle
 - One cavity can show up in multiple data points

Material Removal Study (2)

Material Removal Study (3)

- Data separated by treatment types
- Point number is a meaningless counter
- average and standard deviation of all points are shown by the large open point
- Data are consistent with no change of gradient with material removal, i.e., $\Delta Eacc / \Delta x = 0$

- The quench gradient change does not depend on the amount of material removal, independent of processing type
- The quench gradient does not improve or degrade, on average, with additional processing*
- Possibilities I can think of:
 - Maybe too much material is already removed to make a difference? We start with a minimum of 150 μ m
 - Would imply the thesis "only variable of interest is material removal" is wrong
 - Well performing cavities may not be reprocessed. Cavities are weighted in this analysis by the number of processes, which may favor bad ones
 - Would imply the thesis "all cavities are equivalent" is wrong
 - This is all the data, warts and all. I did not remove any cavities because I knew they were "bad"
 - Would imply the thesis "all cavities are equivalent" is wrong, which in some cases we known to be true

* D. Reschke shows an improvement from first to final gradient in a subset of cavities – not necessarily inconsistent, due to different analysis method, but must be understood.

It is not possible to do such an analysis, even with the wonderful DESY database, without expert intervention

Material Removal Study (5)

IIL

Mode Measurement Study (1) Analyzed DESY/TTF/Vertical (CW) passband mode data to determine whether any cell pair (or cell 5) showed a statistically higher probability to cause cavity breakdown than others Could show systematic contamination during assembly Data sample: 105 "Best" tests of all 117 cavities from Production Batches 1, 2, 3, and 4; data extracted July 24, 2006 http://tesla-new.desy.de/content/cavitydatabank/index eng.html Mode measurement method: □ For each mode, the gradient measured by the pick-up probe is that seen by the end-cell Gradient seen by pairs of cells (or cell 5) determined by scaling measured gradient in the end-cell by the relevant E_{cell} factor □ Maximum gradient seen by pairs of cells (or cell 5), determined in this manner, in any mode measurement, is recorded in the database. □ Assume the lowest maximum gradient in a pair of cells (or cell 5) indicates that the cause of the limitation is physically located in that pair of cells (or cell 5) **Completeness of this analysis depends on the assumption of field flatness in** all cells □ In many cases, the lowest maximum gradient was evident in more than one pair of cells (or cell 5).

Mode Measurement Study (2)

DESY data

• Data shown are:

- All tests (red squares)
- Tests with gradient >28 MV/m (blue diamonds)
- Results
 - Very consistent with random breakdown location for the (correlated) datasets
 - No evidence of systematic contamination during assembly

S0 summary

- First S0 results
 - Tight-loop
 - good candidates for improved cavity surface treatment
 - Fresh acid (3 um, closed) at KEK (single cells) was shown
 - New data from qualified vendor Accel with gradient up to 40 MV/m (low statistics)
 - Accel cavities at JLab perform comparably to Accel DESY production 4 cavities
 - Several cavities have been identified for global swaps
 - Production-like
 - Qualification of new vendors with gradients around 20 MV/m (low statistics)
 - KEK data with four MHI cavities
 - JLab(Fermilab) data with four AES cavities
 - Global data analysis
 - Assuming all cavities are equivalent, no dependence of quench gradient on material removal
 - No systematic cell dependence of quenches
- Facilities are coming online
 - New Fermilab vertical test stand now operational, KEK STF in Feb.2008

- Let's choose a common coordinate system
- Most of the ILC baseline-shape cavity data have this one
- We have to overcome this inconvenience

Global data analysis issues

- High priority technical items requiring manpower for discussion
 - Establish a common coordinate system
 - Improve data availability and communication, for improved worldwide test comparability (this Working Group)
 - As in any collaboration, system experts will always be needed for details
 - Thermometry and other diagnostics (Working Group 2)
 - How to compare the results?
 - How to include the global coordination aspects, e.g., cavity location and status?
 - All within the bounds of limited resources