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Abstract

Before the successful detection of gravitational waves (GWs) with LIGO and VIRGO [1], super-
conducting radio frequency (SCRF) cavities were already considered as potential alternatives
for large laser interferometers. They are particularly suited to probe high frequencies above
∼ 10 kHz by using a heterodyne approach where the GW has to be resonant with the fre-
quency difference of two cavity eigenmodes. Since DESY/UHH and FNAL intend to reactivate
the research on these detectors, this thesis revisits the theory of the GW-detector interaction.
In this context, we consider the indirect coupling to the cavity boundaries as well as the di-
rect coupling to the electromagnetic field mediated by the Gertsenshtein effect. The formal-
ism is applied to the geometry of the MAGO prototype, which was built in 2005 at INFN in
Genoa [2].
We compare the results with recent publications [3, 4] that focus on the same type of detectors.
Different to these papers, we include a damping term that was initially found by [5] and signifi-
cantly flattens the Breit-Wigner curves of the resonances. We further provide a detailed analysis
of the mechanical coupling as well as possible noise sources and the prospective sensitivity of
the MAGO cavity. The results are compared to signals above 10 kHz from promising candidates
for new physics, including primordial black holes (PBHs) and black hole superradiance. We
show that future improvements of the MAGO parameters could enable to reach the region of
new physics. The aim of this thesis therefore is to provide a basis for future research on the
theoretical as well as experimental aspects of the detector, focusing on possible modifications.

Kurzzusammenfassung

Bereits vor der ersten Messung von Gravitationswellen (GW) mit LIGO und VIRGO [1] wurden
supraleitende Hohlraumresonatoren im Radiofrequenz-Bereich (auch SCRF Kavitäten genannt)
als potentielle Alternativen zu großen Laser Interferometern untersucht. Sie sind besonders
dazu geeignet, hohe Frequenzen über ∼ 10 kHz zu messen. Dabei betrachtet man bevorzugt
einen heterodynen Ansatz, bei dem die GW resonant auf die Frequenzdifferenz zwischen zwei
Eigenmoden des Hohlraumresonators ist. Aufgrund des Interesses von DESY/UHH und FNAL,
die Forschung an diesen Detektoren wieder aufzunehmen, setzt sich diese Arbeit zum Ziel, die
Theorie der Wechselwirkung zwischen GW und Detektor neu zu entwickeln. Dabei betrachten
wir sowohl die indirekte Kopplung der GW an die Wand des Hohlraumresonators als auch die
direkte Kopplung an das elektromagnetische Feld durch den Gertsenshtein Effekt. Der Formal-
ismus wird auf die Geometrie des MAGO-Prototyps angewand, der 2005 am INFN in Genua
entwickelt wurde [2].
Wir vergleichen die Resultate mit aktuellen Publikationen [3, 4], in denen dieselbe Art von
Detektor untersucht wurde. Im Gegensatz zu diesen Veröffentlichungen berücksichtigen wir
einen Dämpfungsterm, der bereits in [5] beschrieben wurde und zu einer Abflachung der Breit-
Wigner Resonanzen führt. Desweiteren untersuchen wir die mechanische Kopplung im Detail
und analysieren mögliche Störeffekte. Damit schätzen wir dann die Sensitivität von MAGO auf
GW ab. Die Ergebnisse werden mit Signalen über 10 kHz von möglichen Kandidaten für neue
Physik verglichen. Dabei betrachten wir sowohl primordiale schwarze Löcher als auch Super-
radianz von schwarzen Löchern. Wir zeigen, dass es mit verbesserten Parametern der MAGO
Kavität möglich sein könnte, diese Effekte nachzuweisen. Die Absicht dieser Masterarbeit ist
daher, eine Basis für zukünftige Forschung an diesen Detektoren zu bilden, die sich auf die
theoretische und experimentelle Weiterentwicklung konzentriert.



Table of Contents

1. Introduction 1

2. Heterodyne Gravitational Wave Experiments 6
2.1. General Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2. Gravitational Wave Couplings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3. MAGO and MAGO Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4. The Mechanical Spectrum of MAGO . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5. Future Developments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3. Cavities 19
3.1. Cavity Eigenmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2. Energy and Quality Factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3. Power Spectral Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4. Cavity Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.4.1. The Perturbed Boundary Condition . . . . . . . . . . . . . . . . . . . . . 24
3.4.2. Solving the Boundary Value Problem . . . . . . . . . . . . . . . . . . . . 26
3.4.3. The Connection Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . 29

3.5. Wall Deformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4. Gravitational Waves 32
4.1. Linearized Theory of Gravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.2. The Equation of Geodesic Deviation . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3. The TT-Gauge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4. The Proper Detector Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.5. Gravitational Waves and Tidal Forces . . . . . . . . . . . . . . . . . . . . . . . . 40

5. The Equations of Motion 42
5.1. The Gertsenshtein Effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.2. The Full Lagrangian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.2.1. Equation of Motion for the Electromagnetic Field . . . . . . . . . . . . . 45
5.2.2. Equation of Motion for the Displacement Field . . . . . . . . . . . . . . . 46

5.3. The Full Set of Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4. The Projected Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6. Solving the Equations of Motion 50
6.1. Lorentz Force Detuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.2. The Signal PSD for Monochromatic Gravitational Waves . . . . . . . . . . . . . 52
6.3. Gravitational Wave - Mechanical Coupling . . . . . . . . . . . . . . . . . . . . . . 54
6.4. Mechanical - Electromagnetic Coupling . . . . . . . . . . . . . . . . . . . . . . . 56
6.5. Gravitational Wave - Electromagnetic Coupling . . . . . . . . . . . . . . . . . . . 57
6.6. A Comment on Multiple Modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.7. Signal Power . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

iv



7. Noise Sources 62
7.1. Mechanical Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
7.2. Thermal Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
7.3. Amplifier Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
7.4. Oscillator Phase Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
7.5. Other Noise Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
7.6. The Total Noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

8. Sensitivity Estimates 71
8.1. MAGO Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
8.2. Comparison to Previous Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

9. Possible Sources 76
9.1. Primordial Black Hole Mergers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.2. Black Hole Superradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
9.3. Comparison with Sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

10.Conclusion 82

11.Outlook 84

12.Acknowledgements 87

A. Basic Tools from Elasticity Theory 88
A.1. The General Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
A.2. Elastodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B. Further Calculations for Cavity Eigenmodes 92
B.1. Solenoidal and Irrotational Modes . . . . . . . . . . . . . . . . . . . . . . . . . . 92
B.2. Resonance Behaviour of Irrotational Modes . . . . . . . . . . . . . . . . . . . . . 93

C. RLC Circuits and Thermal Noise 96
C.1. RLC Circuits and Cavities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
C.2. The Thermal Noise PSD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

D. Axions 99

E. MAGO Parameters 103

Bibliography 107

v



1. Introduction

The first detection of a gravitational wave (GW) in 2016 [1] by the LIGO/VIRGO collaboration
opened a new window for research in astrophysics and cosmology. Since then, several black
hole and neutron star mergers have been measured, providing remarkable insights into the most
energetic processes in the universe [6]. Most of the future efforts to detect GWs will be based
on interferometers such as the Einstein Telescope [7, 8, 9] or LISA [10]. Due to the weak sig-
nal of GWs, they have to be very large1, so the question arises whether it is possible to use
smaller detectors of a different type. Pioneering work on alternative detector types was already
conducted in the 1960s by Joseph Weber, who invented the so-called Weber Bar Detectors [11,
12]. They are based on a simple elastic body that is deformed by an incoming GW. When
the GW frequency is resonant with a mechanical eigenmode, the signal is amplified, making
it possible to capture the typically very low amplitudes. The displacement is measured by a
resonant transducer, i.e. it is converted into an electromagnetic signal. Since these detectors
are smaller and less expensive than interferometers, they are easy to fabricate. Examples for
Weber Bar experiments conducted around the turn of the millennium include EXPLORER [13],
NAUTILUS [14], ALLEGRO [15] and AURIGA [16]. However, they are only sensitive to con-
siderably strong sources in the Milky Way, which are expected to be very rare [11]. Therefore,
the larger interferometers were preferred and many scientists that worked on the aforementioned
experiments moved to the LIGO/VIRGO collaboration.
Today, improved technologies and a growing interest in frequency ranges beyond the reach of
interferometers have led to an intensive search for alternative detector designs. There are cur-
rently many concepts on the market, including optically-levitated sensors [17], bulk acoustic
wave devices [18, 19, 20] and superconducting rings [21, 22], that are being discussed or already
in operation. Although they may not have the required sensitivities, exotic ideas are also being
considered, such as measuring the GW interaction with a Bose Einstein condensate [23, 24].
Particularly high frequency GWs above ∼ 10 kHz are of interest as there are no known sources
at this frequency in the Standard Model of particle physics and cosmology. Thus, discoveries of
such sources would definitely point towards new physics. These prospects have led to the for-
mation of the Ultra-High-Frequency Gravitational Wave (UHF-GW) initiative, which aims to
create a network of researchers searching for GWs above 10 kHz [25]. A comprehensive overview
of potential sources and further experimental approaches can be found in [26].
In this master thesis, we want to focus on a different approach, which is comparable to that of
the Weber Bar detectors. Instead of a solid mechanical resonator, however, the GW couples to
an electromagnetic field trapped in a cavity. There are two ways to design such an experiment.
The first method uses a static B-field and utilizes the inverse Gertsenshtein effect [27, 28], which
means that the GW directly couples to the electromagnetic field and resonantly induces a photon
in an eigenmode of the cavity. Similar experiments such as ADMX [29] and HAYSTACK [30]
are currently under operation to search for Axions, which couple to the electromagnetic fields
in an analogous way. The possibility of using them for GW detection as well was proposed in

1The two arms of LIGO, for instance, have a length of 4 km. LISA will even provide an arm length of 2.5×106 km.
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1. Introduction

[31], where sensitivity estimates are given as well.
The second method uses a heterodyne approach where the GW is resonant with the frequency
difference between two electromagnetic cavity eigenmodes. This is particularly suited for GWs
in the 1 kHz to 10MHz range, where cavities with corresponding eigenmodes have to be very
large. The frequency difference, however, is in principle independent of the cavity size and allows
for compact designs even in the kHz regime. We will therefore focus on this concept throughout
the thesis.
It should be pointed out that the heterodyne approach is not a novel one. First proposals were
made already in the 1970s [32, 33, 34, 35, 36, 37], about ten years after the Weber Bar detectors
were suggested. Important for the physical understanding was that the Gertsenshtein effect is
suppressed at low frequencies and that an indirect coupling of the GW to the cavity boundaries
dominates. The changing boundaries lead to an overlap between the modes, allowing them to
exchange energy. In earlier works (e.g. [37]), the effect was described by an effective dielectric
and magnetic permeability tensor. A more direct formalism based on elasticity theory was in-
vented by J. Lobo in 1995 [38]. In the same paper, he also pointed out that the geometry that
provides the best coupling to the GW is given by a sphere.
First attempts for an experimental implementation were made in 1984 [39], which led to further
studies at INFN in the late 90s [40, 41, 42]. The main challenge was to build a cavity that
has two nearly degenerate eigenmodes, which is not possible with a single sphere. One can
solve this by using two coupled spheres so that each eigenmode splits into a symmetric and an
antisymmetric part. For financial reasons, INFN started with a cylindrical design that was not
optimized for GW detection. The first prototype PArametric COnverter (PACO) [41] obtained
the two nearly degenerate modes with two cylindrical cavities coupled by an axial iris. A sketch
and a picture of the final prototype can be found in figure 1.1.
Successful operation and characterization of the electromagnetic and mechanical properties led
to further studies with improved cavity geometries. An important step was the implementation

(a) Technical drawing of PACO [40]. (b) Picture of the PACO prototype.

Figure 1.1.: The PACO prototype. (a): Technical drawing showing how the cylindrical cavities
are coupled. (b): Picture of the final prototype at INFN (Image credits to Gianluca Gemme
(INFN)).
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1. Introduction

of the required spherical geometry, which resulted in another two prototypes called Microwave
Apparatus for Gravitational Waves Observation (MAGO) in 2005 [2, 5]. They consist of two
slightly flattened spheres with a central coupling system that is either constant or tunable with
an additional tuning cell. The goal was to be sensitive in a frequency range of 5 kHz to 20 kHz.
To achieve a high cavity quality factor and thus improve the sensitivity, superconducting shell
material requiring a cryogenic system to cool the walls should be used. Pictures of the proto-
types and a technical drawing can be found in figure 2.3 and 2.4.
However, the funding was stopped shortly after the initial proposal, so the cavity was never put
into operation. Many key tasks such as a detailed simulation, characterization and measure-
ment of the mechanical eigenmodes and the development of a suitable cryogenic system remained
open. Just as with the Weber bar detectors, most researchers of the MAGO collaboration moved
to LIGO and VIRGO.
Improvements in cavity technology, noise reduction and cryogenics have led to an increasing
interest in MAGO type cavities over the last years. Since it was suggested in [3, 43] that
similar experiments can be used for Axion detection, particularly DESY/UHH and FNAL are
interested in reactivating the research on heterodyne cavity detectors. The current plan is to
gather first experiences with the original MAGO prototype, which is currently at the INFN in
Genoa. Attempts to loan the cavity were successful, enabling first experiments to be scheduled
at DESY/UHH in spring 2023. The main goal is to characterize the mechanical spectrum and
the electromagnetic resonances at room temperature. Subsequently, the cavity will be taken to
FNAL, where first cold tests will be conducted. Eventually, it will come back to DESY/UHH,
where the mechanical spectrum will be studied again at cold temperatures. While the cavity
is at FNAL, a PhD student is going to develop a method for conducting the complicated mea-
surements. After these basic studies, the long-term goal is to build new detectors, possibly with
different geometries, and to improve the sensitivity as well as the frequency range.
The work on this master thesis started before the collaboration between INFN, DESY/UHH and
FNAL was initiated, and even before DESY/UHH decided to focus on this project. It is based
on a talk by Sebastian Ellis [44] given in 2021 at DESY as well as the aforementioned proposals
to use the same types of detectors for Axion research [3, 43]. The main goal is two-fold: First,
we aim to provide a comprehensive and complete theoretical treatment of the interaction be-
tween GWs and the electromagnetic field in the cavity. This includes the mechanical interaction
which was already considered by the MAGO collaboration as well as the Gertsenshtein effect.
Although the latter is suppressed at low frequencies, we assume that the cavities could have a
tunable frequency difference ∼ O(1GHz), where the effect becomes dominant. The theoretical
part is mainly based on previous works, in particular [4, 5, 31], but we translate the results into
a novel, consistent formalism and provide some extensions (for instance, a new treatment of the
Gertsenshtein effect).
It is important to point out that there is currently no scientist at DESY/UHH who has worked
on this detector type before. Another advantage of a detailed theoretical treatment therefore
is a general understanding of the system and its parameters. This allows for making electrody-
namic and mechanical simulations and to apply the final formalism to the MAGO prototype.
Therefore, a 3D model of the prototype is needed, which was, unfortunately, not available during
the work on this thesis. We only had technical drawings of the cavity with constant coupling
(see figure 2.4), so the measure of the tuning cell had to be estimated. With the approximated
model, we were able to calculate the important couplings of GWs to the cavity and to analyse
the sensitivity reach.
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1. Introduction

With the methods and results shown in this thesis, future bachelor, master or even PhD students
should have a guideline to conduct more accurate and detailed studies of the original MAGO
design. Many theoretical calculations shown here are carried out for special cases2, so there are
many possibilities to look at more general configurations in future.
It should be noted that we are not the only group working out the theoretical details of MAGO.
A collaboration of scientists from different universities in Europe3 revisited the physics of this
detector type as well and published a paper in March 2023 (Berlin et al. [4]). The content is
similar to this thesis, so we will often refer to the paper and compare the results. We point out
that our approach is primarily based on first principles, while many terms are introduced by
hand in Berlin et al. [4]. This results in one important difference: We also account for the field
back-action to the mechanical modes which leads to a considerable damping of the signal (also
called Lorentz Force Detuning). Since it simultaneously reduces the noise as well, the effect
does not change the overall conclusions of Berlin et al. [4], but it changes the hierarchy of the
contributions from different mechanical modes to the signal. Furthermore, Berlin et al. [4] only
works with perfect spheres that are coupled by a cylinder of some unspecified radius and does
not consider the real MAGO design. This thesis provides calculations for the couplings of the
original prototype.
This thesis is structured as follows: We start with a detailed description of heterodyne cavity
experiments with a particular focus on the MAGO design in chapter 2. We discuss the mechan-
ical and electromagnetic properties as well as the tuning mechanism and possible modifications
for future cavities. In chapter 3, we provide a detailed theoretical background of cavity electro-
dynamics. Starting with basic properties of eigenmodes, we discuss ways to describe energy and
spectral distributions of the electromagnetic fields. A key ingredient to describe the mechanical
coupling to the electromagnetic field is cavity perturbation theory, which is also fully developed.
Chapter 4 is devoted to the theory of GWs and some techniques from relativistic geodesy. Most
of the content is standard textbook material, but we also give a detailed discussion of the proper
detector frame which we need to properly describe the Gertsenshtein coupling. In chapter 5, we
show the proper theoretical treatment of the (inverse) Gertsenshtein effect and derive the full
Lagrangian of the system. The equations of motion are then solved in chapter 6, where we also
analyze the coupling coefficients for the MAGO design and discuss the signal power for a toy GW
with strain h0 = 10−20. In order to make predictions for the sensitivity, we give a theoretical
discussion of the five most important noise sources in chapter 7. Additionally, other possible
noise sources are discussed, but we neglect them as they are expected to be much less dominant.
We then show estimates for the sensitivity in chapter 8 and compare them with the results from
[4]. Chapter 9 finally discusses possible sources of high frequency GWs from extensions of the
Standard Model of particle physics and cosmology and compares the expected strains with the
sensitivity of MAGO. We particularly concentrate on primordial black holes (PBHs) and black
hole superradiance as they are the most promising candidates which could be measurable in the
foreseeable future. We conclude the results in chapter 10 and give a detailed outlook to future
developments of the experiment together with open questions for the next step of theoretical
studies. This chapter may serve as an inspiration for future bachelor and master projects.
In the appendix, one can find additional information for some of the theoretical topics. We

2For example, we only consider monochromatic GWs travelling in z-direction throughout the thesis, which is a
very strong restriction.

3The same group has also studied the application of heterodyne cavities to Axion detection [3, 43] and the
Gertsenshtein effect in static B-field experiments [31].
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1. Introduction

shortly discuss aspects of elasticity theory in appendix A and some more details on cavity eigen-
modes in appendix B. Appendix C gives an alternative approach to treat thermal noise in the
cavity and appendix D discusses prospects of Axion detection. Finally, appendix E provides an
overview over some technical parameters of MAGO.
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2. Heterodyne Gravitational Wave Experiments

This chapter gives a short introduction to heterodyne experiments and how they can be used to
detect GWs. We start with the general principle and the two different couplings of a GW that
can cause a signal in the readout system. Since this thesis is based on previous studies of the
former MAGO collaboration, we further discuss their scientific goals and the particular cavity
design they choose. In 2005, the project was cancelled due to financial reasons and only some
prototypes were built, which were exhibited at the University of Genoa [4] for several years.
Currently, one of them is borrowed by UHH and DESY to make first measurements, and is
going to be moved to FNAL where further measurements will be conducted. This shows the
huge scientific interest on the MAGO cavity design and it will therefore be also the focus of this
thesis. However, we will conclude this chapter with a short discussion of possible improvements
of the design and tuning mechanism, which will be necessary to cover the full potential of the
experiment in future.

2.1. General Principle

Heterodyne Cavity setups for GW detection were first suggested in the 1970s by [32, 33] with
further developments by [35, 36]. The basic idea is that a GW can couple to the electromagnetic
field of a resonator and therefore induces an overlap of the eigenmodes. This overlap can be
measured with an appropriate setup. As a resonator we use an electromagnetic cavity which is
well known from accelerator physics and already used in Axion experiments such as ADMX [29]
and HAYSTAC [30]. An external oscillator resonantly excites a specific eigenmode ω0 which
we denote as pump mode throughout this thesis. We then consider a second mode ω1, which is
nearly degenerate to the first one and in best case not excited by the oscillator1. If the GW is
resonant to the frequency difference between the two modes, i.e. ωg ≈ |ω1 − ω0|, it will induce
a transition of the photons from the pump mode to the second mode, which we therefore call
signal mode in the following. An additional readout system is then coupled to the signal mode
to search for the excited photons. A sketch of the principle is shown in figure 2.1.
Ideally, the readout measures no signal unless a GW propagates through the system. However,
there are several possible noise sources that can induce photons in the signal mode. They are
treated in detail in chapter 7. Another problem is that, for instance due to ohmic losses through
the cavity walls, cavity eigenmodes are in general not perfectly monochromatic. This leads
to a Breit-Wigner shape of the mode spectrum where its width is governed by the so-called
quality factor (see chapter 3.2 for more details). If the frequency difference, i.e. |ω1−ω0|, is too
small, the Breit-Wigner curves overlap which makes it difficult to distinct between the modes.
It is therefore necessary to achieve quality factors that are as high is possible. One way to
do this is to use superconducting radio frequency (SCRF) cavities that are cooled below the

1This can in general not be perfectly achieved as the oscillator always couples to the second mode with a factor
ϵ. One important task of the cavity design is to keep ϵ as small as possible. We will discuss this in detail in
later chapters, in particular chapter 7.
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2. Heterodyne Gravitational Wave Experiments

Figure 2.1.: This sketch shows the principle of heterodyne cavity experiments. One eigenmode
ω0, called pump mode, is excited by an external oscillator. When a GW propagates through the
system, it induces a transition from the pump mode to a second mode ω1, called signal mode.
A readout system is then coupled to the signal mode. If photons reach the readout, we know in
principle that there was a GW. The advantage of this approach is that the GW ideally has a
frequency ωg ≈ |ω1−ω0|, which can be much smaller than the frequency of the cavity eigenmodes.

critical temperature of the shell material. The MAGO collaboration [2] used Niobium, which
can achieve very high quality factors (∼ O(1011)) in the superconducting state.
In principle, a GW could also couple to a static B-field in the cavity such that it resonantly
enhances the cavity eigenmodes directly. This approach is used by the aforementioned Axion
experiments ADMX and HAYSTAC. In [31], it is argued that these experiments should be
already sensitive to GWs with strains h ≳ O(10−22) in the appropriate frequency band. However,
the best signal strength is achieved when a GW is resonant with an eigenmode, which typically
has a frequency above c/Lcav, where Lcav is the typical size of the cavity. For MAGO with
Lcav ∼ 50 cm, this corresponds to ωg ∼ 3.77GHz. Sources with these frequencies are scarcely
predicted by theoretical models, so the physical motivation to search in this region is very low.
The heterodyne setup can be, in principle, tuned to arbitrary frequencies above O(1 kHz) and
is therefore able to scan a much larger and more promising frequency region.
There is another reason why the heterodyne approach is favourable compared to static B-field
experiments for GW frequencies much below O(1GHz). In the following, we will only give a
brief presentation of the arguments. More details on the GW-cavity interaction can be found in
chapter 5 and 6. The idea is that a passing GW induces an effective current J⃗eff = gGW(t)F⃗0(t)
inside the cavity consisting of a function gGW(t) ∼ eiωgt that describes the GW with frequency
ωg and a field F⃗0(t) that can be either the E-field or the B-field. We start with Ampéres law

∇× B⃗ = µ0J⃗eff + µ0ε0
∂E⃗

∂t

which can be written as a wave equation

∆E⃗ +
∂2E⃗

∂t2
= µ0

∂J⃗eff
∂t

by using the Maxwell equations. Thus, the effective current induced by the GW drives the
electromagnetic field in the cavity. In a static setup where F⃗0(t) = F⃗0, the driving term becomes

7



2. Heterodyne Gravitational Wave Experiments

∂tJ⃗eff(t) ∼ iωgJ⃗eff(t). On the other hand, if F⃗0 corresponds to an eigenmode of the cavity with

frequency ω0, i.e. F⃗0 ∼ eiω0t, we get ∂tJ⃗eff(t) ∼ i(ω0 + ωg)J⃗eff(t). Since ωg ≪ ω0, the effective
current in the heterodyne setup is therefore much larger.
For the same reasoning, the heterodyne approach was recently suggested for axion searches [3,
43, 45], since the axion coupling to the electromagnetic field is similar to the GW coupling. We
will discuss some aspects of axions in Appendix D, where they are described as an additional
noise source.

2.2. Gravitational Wave Couplings

In the last chapter, we described the general principle of heterodyne experiments without giving
details on how a GW interacts with the electromagnetic field. This coupling is not trivial and
can be split into two different channels [4, 37]. The first one is the direct coupling of the GW
to the electromagnetic field via the inverse Gertsenshtein Effect [27, 28, 31, 46]. It is usually
described in terms of classical field theory, which we will employ in chapter 5.1. However, we
can also understand the effect as a graviton-photon interaction in the particle picture.
In the long wavelength approximation, i.e. where the wavelength of the GW is assumed to be
much larger than the cavity size, we can distinguish between a GW coupling to the E-field and to
B-field. These couplings are denoted by the overlap factors ηE01 and ηB01 respectively. A detailed
derivation is given in chapter 5.4. The solutions are

ηE01 =
1

H
√
U0U1

∫
Vcav

d3xH0(x⃗)ε0E⃗0(x⃗)E⃗1(x⃗)

ηB01 =
1

H
√
U0U1

∫
Vcav

d3xH0(x⃗)
1

µ0
B⃗0(x⃗)B⃗1(x⃗),

where E⃗0, B⃗0 and E⃗1, B⃗1 are the pump and signal modes. Furthermore, H0(x⃗) represents the
GW and H, U0 and U1 are some normalization factors.
The second channel is an indirect coupling of the GW to the mechanical modes of the cavity
shell. The deformation leads to an overlap between the cavity eigenmodes and can be described
within cavity perturbation theory (see e.g. chapter 3.4). In the particle picture, it can be
understood as a GW-phonon-photon interaction.
The GW-mechanical coupling for a monochromatic GW is described by two coupling coefficients
Γ+ and Γ× corresponding to the polarisation. They are derived in chapter 4.5 for a GW travelling
in z-direction and yield

Γ+ :=
V

−1/3
cav

M

∫
Vcav

d3xρ(x⃗)
(
xξl,x(x⃗)− yξl,y(x⃗)

)
Γ× :=

V
−1/3
cav

M

∫
Vcav

d3xρ(x⃗)
(
xξl,y(x⃗) + yξl,x(x⃗)

)
,

where ρ is the density of the cavity shell and ξ⃗(x⃗) the shell displacement field.
The mechanical-electromagnetic coupling is given by a connection coefficient C l

01, which we
derive in chapter 3.4, where we find

C l
01 =

V
1/3
cav

2
√
U0U1

∫
∂Vcav

dS⃗ · ξ⃗l(x⃗)
[ 1

µ0
B⃗0(x⃗)B⃗1(x⃗)− ϵ0E⃗0(x⃗)E⃗1(x⃗)

]
,

8
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Figure 2.2.: This sketch shows the two different channels of the GW interaction with the
electromagnetic field. On the left, the direct coupling via the inverse Gertsenhtein effect is shown
governed by two couplings ηE01 and ηE01 in the long wavelength regime. Note that hµν denotes the
strain of the GW, which is supposed to be monochromatic throughout this thesis. On the right,
the indirect coupling of the GW over a mechanical mode u⃗l is shown. It can be understood as a
graviton-phonon-photon interaction in the particle picture. The GW-mechanical coupling can be
described by two coupling coefficients Γ+ and Γ×, while the mechanical-EM coupling is governed
by the connection coefficients C l

01. In both pictures, E⃗0, B⃗0 and E⃗0, B⃗0 are the fields of the
pump and signal mode, respectively.

Here, we integrate over the unperturbed surface of the cavity shell. An appropriate design in
order to achieve high signal must be chosen such that all coupling parameters are maximized.
The main properties that have to be fixed are the cavity geometry as well as the mechanical
and electromagnetic eigenmodes. Additionally, the noise must remain as low as possible and the
frequency difference between pump and signal mode should be tunable over a wide frequency
range. We will further discuss this in chapter 2.3 and 2.5. A sketch of all couplings is shown in
figure 2.2.
As argued in [4], the mechanical coupling is supposed to give the strongest signal in the cavity.
The main reason for this is that

|E⃗(mech)
sig |

|E⃗(EM)
sig |

∝ c

cs
≈ 106

where cs is the speed of sound in the cavity shell. However, this assumption is made for the
long wavelength regime and the mechanical signal is supposed to go down for higher GW fre-
quencies. We will therefore analyze both channels and in particular consider the behaviour of
the Gertsenshtein coupling towards higher frequencies.

2.3. MAGO and MAGO Design

The MAGO cavity proposed in [2] was designed to scan over a frequency regime from 4 kHz
to 20 kHz. Since our goal is to scan a much larger region up to ∼ 1GHz, the design is not

9
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(a) Fixed Coupling (b) Variable Coupling

Figure 2.3.: Pictures of the prototypes built by the MAGO collaboration. (a): Cavity with fixed
coupling, where no tuning is possible. In figure 2.4, technical drawings of this cavity are shown.
(b): Cavity with central tuning cell. We had to guess the shape of the cell in order to construct
a 3D model of the system. Image credits to Gianluca Gemme (INFN).

sufficient for our purposes. However, first experiments at DESY and FNAL will be conducted
with the MAGO prototype to gain experience with the cavity and the measurement techniques.
We therefore concentrate on this particular design throughout the thesis as it will find direct
application in the foreseeable future. Possible modifications in order to reach higher frequency
differences are discussed in chapter 2.5. We also note that, as pointed out in [4, 43], it is possible
to make broadband measurements even with small frequency differences.
It was first shown in [38], that the detector design which is most sensitive to GWs is given
by a spherical cavity. The main reason is that a GW only couples to a discrete set of l = 2
eigenmodes, so the energy is less distributed. In [5], it was further pointed out that spherical
cavities have particularly large quality factors (see chapter 3.2), which is important to separate
signal mode and pump mode.
Pure spherical shapes, however, are not well suited for heterodyne GW detection. GWs are
spin 2 waves, so due to angular momentum conservation, the pump and signal mode must differ
as ∆l = 2 to achieve the optimal coupling. Furthermore, the required modes must be nearly
degenerate and we need an efficient mechanism to tune the frequency difference between them.
As argued in [3], these requirements are scarcely fulfilled by spherical cavities.
The MAGO collaboration solved the problem by using two coupled spheres with a malleable
central tuning cell [2, 5, 40], see figure 2.3. In addition, it turned out to be advantageous to
slightly flatten the spheres such that they form an ellipsoid. This allows for a better control of
the orientation of the electromagnetic fields, which is important to achieve the required ∆l = 2
difference between the pump and signal mode. In the coupled system, the modes corresponding
to the initial spherical eigenmodes split into a symmetric and antisymmetric part which are
nearly degenerate. The level of degeneracy depends on the coupling and can therefore be easily
tuned. As shown in [2], the most appropriate mode is the TE011

2 mode.

2We use the standard convention that TE denotes the Transverse Traceless and TM the Transverse Magnetic
mode.
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Figure 2.4.: Technical drawing of the MAGO design with fixed coupling. Shown are the size
and orientation of the cavity cells as well as the flanges that couple the cavity to the external
oscillator and readout. Image credits to Gianluca Gemme (INFN).

Figure 2.5.: Qualitative analysis of the cavity measure with variable coupling. The open source
program IC Measure was used for the measurement. It is important to note that these are only
rough values due to a possible bias in perspective. Accurate values can only be obtained by direct
measurements at the real cavity, since technical drawings for the variable coupling were not
available. When this thesis was written, DESY did not have the cavity, so we had to use this
way to obtain parameters for the simulations.

11
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Two prototypes were built by the MAGO collaboration which are both shown in figure 2.3.
One has a fixed coupling where no significant tuning is possible (figure 2.3a). The other has a
central cell which can be stretched an squeezed and therefore allows for a variable tuning of the
geometry (figure 2.3b). From Gianluca Gemme, one of the former MAGO members, we only
received a technical drawing for the system with fixed coupling, which is shown in figure 2.4.
When this thesis was written, direct measurements at the real prototype were not possible as
DESY did not yet have the cavity. For the tunable version, we therefore had to estimate the
exact size and shape of the central cell from the pictures. A picture of the qualitative analysis
is shown in figure 2.5. It is important to note that the obtained values could be inaccurate due
to a possible bias in perspective. However, they were sufficient to construct a 3D model which
contains the most important properties of the cavity.
To simulate the electromagnetic fields, we used CST Microwave Studio from Dassault Systèmes.
With the available measures, it was straightforward to build a 3D model and to run the eigen-
mode solver of the program. The total electric field of the required symmetric and antisymmetric
TE011-modes is shown in figure 2.6. Some properties can be better seen by considering the vec-
tor field, which can be done in figure 2.7. On the left cell, the symmetry difference between the
modes is depicted. We also see that the fields are aligned along the minor axis of the ellipse,
which shows that we have better control over the field alignment compared to an approach with
pure spheres. Note that the field strength is arbitrary and will be normalized to the input en-
ergy in the pre-processing. From [2] and the 3D model, we were able to derive some important
properties of the MAGO cavity that are useful for the later calculations. First of all, we note
that the detector is made of niobium. This has some advantages concerning the malleability
and superconductivity. For the latter, the critical temperature is Tc ≈ 9.2K and the critical
magnetic field is Bc ≈ 180−200mT [47]. Since the signal is proportional to the energy stored in
the electromagnetic field, we have to operate the cavity near the quenching limit. We adopt the
value for the average pump field strength from [4], which is assumed to be ⟨E0⟩ = 30MV/m.

Table 2.1.: This table shows some important material parameters. The values for niobium are
highlighted in bold. Note that RRR corresponds to Residual Resistivity Ratio, which is 300 in
this case. Further values are given for annealed copper (OFE = Oxygen Free Electronic Grade)
and stainless steel (LN = Low carbon, Nitrogen). Thanks to Marc Wenskat for providing us
with these data.

Material
Temperature [K] Density Young’s Modulus

Poisson’s Ratio
[K] [kg/m3] [GPa]

Cu OFE Annealed
293

8930 115 0.344
SS 316LN 7950 196 0.27

Nb RRR 300 8570 106 0.40

Cu OFE Annealed
2

8930 138 0.377
SS 316LN 7950 208 N/A

Nb RRR 300 8570 104.8 N/A
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Figure 2.6.: Pump mode with ω0 = 1.773430GHz (upper plot) and signal mode with
ω1 = 1.773446GHz (lower plot) of the MAGO-like cavity. The frequency difference is ω1−ω0 ≈
16 kHz. Note that the field strength is arbitrary and will be normalized in post-processing.

Figure 2.7.: Vector fields of the pump mode with ω0 = 1.773430GHz (upper plot) and signal
mode with ω1 = 1.773446GHz (lower plot). In the left cell, it can be seen that the signal mode is
antisymmetric. Note that the field strength is arbitrary and will be normalized in post-processing.
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It leads to a total energy of3

U0 =
ε0
2

∫
d3xE⃗2

0 ≈ ε0
2
Vcav⟨E0⟩2 ≈ 40 J,

where we used the cavity volume Vcav ≈ 0.0096m3. Another important value is the shell surface,
which we measured to be4 Acav ≈ 0.3111m2. For the mechanical simulation, we additionally
need some material properties such as the density, Young’s modulus and Poisson’s ratio. They
can be found in table 2.1. An overview of all assumed MAGO parameters can be found in
appendix E.
Finally, we also conducted a first analysis of the tunability. For MAGO, the idea was to use
piezoelectric elements to slightly deform the central cell. For instance, one could place the ele-
ments such that the cell diameter can be changed. We performed a parameter sweep and varied
the diameter from 20mm to 30mm. The result is shown in figure 2.8. One can see that the
frequency difference could roughly be tuned from 16 kHz up to 18 kHz, so a range of 2 kHz can be
probed. However, the MAGO collaboration proposed that the cavity will be able to scan over a
much larger range, i.e. 5 kHz to 20 kHz. The reason why the influence of the central tuning cell
is so small can be seen in figure 2.6. A deformation of the cell changes the electromagnetic field
in a region where it is weak, so it only needs small modifications to fulfill the new boundary con-
ditions. However, in future analysis, also the changing of the distance between the cells should

3See chapter 3.2, eqn. 3.16.
4Note that COMSOL does not specify errors, so we do not mention them here either.
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Figure 2.8.: Parameter sweep of the cell diameter from 20mm to 30mm. The frequency range
varies from 16 kHz to 18 kHz, so a scan over 2 kHz is possible. The strong fluctuations are likely
numerical issues as the mode frequencies are much higher than the difference between them. A
problem is that the shell deformation is performed at regions with small field gradients, so the
field is only slightly modified to fulfill the new boundary conditions. For the final detector, we
require a much larger tuning range. Note that we did not consider that a deformation of the cell
also changes the distance between the cavities, which may allow for a larger scanning region.
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2. Heterodyne Gravitational Wave Experiments

be put into account. In the best case, the cavity should be malleable at a place with large field
gradients, which would lead to a broader frequency range. Therefore, it is necessary to further
investigate possible tuning mechanisms in the future. One example is shown in chapter 2.5.

2.4. The Mechanical Spectrum of MAGO

In the penultimate chapter we discussed that a GW can induce a signal by coupling first to the
mechanical eigenmodes of the shell. It is therefore important to investigate the shell resonances
as they have a direct influence on the outcoming signal power.

Figure 2.9.: Simulated mechanical spectrum of the MAGO-like cavity at room temperature,
which is measured at three different positions. The mechanical resonances are excited by hitting
one point of the cavity with a hammer (here with 1.4N). On the left, we show the locations of
the detectors and the position of the blow. For some excitations, the scale of the y-axis is too
small. A more appropriate scaling is shown in figure 2.10. However, the excitations dominate
in this plot such that the other modes can not be resolved.

15
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2. Heterodyne Gravitational Wave Experiments

First measurements of the cavity are going to be conducted at room temperature. The idea is to
hit the cavity with a hammer at one point and to place several detectors at different positions on
the shell to measure the local displacement. We performed a simulation of such a measurement
with the MAGO geometry using the Frequency Domain tool from COMSOL. The result is shown
in figure 2.9. Some modes are very dominant and the chosen scaling only covers the spectrum of
the weak modes. The dominant resonances are better resolved in figure 2.10, which is the same
plot with a larger scaling of the displacement. We see that some modes are between one and
two orders of magnitude stronger than the rest. When the original MAGO cavity will arrive at
DESY, we will be able to measure the real spectrum and see if it matches with the predicted
behaviour.
With the Eigenmode solver of COMSOL, it is further possible to calculate the displacement
fields of the eigenmodes. We identified the mode shapes of the two most dominant modes. They

Figure 2.10.: Simulated mechanical spectrum of the MAGO-like cavity at room temperature
measured at three different positions. The mechanical resonances are excited by hitting one
point of the cavity with a hammer (here with 1.4N). On the left, we show the locations of the
detectors and the position of the blow. In the chosen scaling, only the most dominant modes can
be resolved. A better resolution of the weaker modes can be found in figure 2.9.
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(a) ωl = 0.0510 kHz (b) ωl = 7.3596 kHz (c) ωl = 8.4175 kHz

Figure 2.11.: This plot shows the mechanical displacement fields for some eigenmodes of the
MAGO cavity. The red colored regions are strongly displaced while the blue regions only have
a small offset. We show no legend as the displacement is in arbitrary units. (a): Lowest lying
mode of the spectrum. (b): Higher order mode which corresponds to a dominant resonance. (c):
Higher order mode which corresponds to another dominant resonance.

are shown in figure 2.11, together with the lowest lying mode at ωl = 0.0510 kHz. One can
see that the largest signals come from higher order modes with many nodes and anti-nodes. A
detailed analysis was beyond the scope of this master thesis. The next step for future simulations
would be to investigate different positions of the hammer blow as well as the detectors. The
most promising locations could then be tested at the real cavity.
It should be pointed out that the step width of 10Hz might be not sufficient to resolve very
narrow resonances. This could be one reason why there are only a few very dominant modes.
Furthermore, we ignored the flanges, which are also expected to have a considerable influence
on the mechanical properties. In future simulations, we will therefore need to put them into
account.

2.5. Future Developments

Although we work with a MAGO-like design throughout this thesis, we will briefly discuss mod-
ifications of the geometry and tuning mechanism in order to scan higher frequency regions.
In the last chapter, we saw that the tuning mechanism suggested for the MAGO cavity does
only allow for relatively small scanning regions of ∆ω ≈ 2 kHz. To reach the full region of
1 kHz − 1GHz, we need a tuning mechanism that is much more efficient. However, a cavity
design allowing for a scan over the full frequency region may be hard to realize which implies
that we will need multiple detectors. Each detector should have a slightly modified design such
that it allows for scanning a different frequencies.
Here, we show a first naive approach for such a modification. One reason why the pump and
signal mode are so close in frequency space is the high symmetry of the system. The idea of
coupling two identical cells leads to the required constructive interference of the corresponding
eigenmodes and the formation of symmetric and antisymmetric mode fields with nearly degen-
erate frequencies. A first modification would be to break the symmetry by slightly deforming
one cavity. The problem is that this leads to two coupled resonators with different eigenfre-
quencies. Hence, there is no constructive interference and a mode cannot exist in both cavities
simultaneously. For the TE011-mode, this means that the field vanishes in one of the cells, in
fact in different ones for the pump and signal mode. Thus, the mechanical overlap as well as

17

Krisztian Peters

Krisztian Peters

Krisztian Peters

Krisztian Peters



2. Heterodyne Gravitational Wave Experiments

0 200 400 600 800 1000
Difference between the minor axis of the two cells ∆d [nm]

10

15

20

25

30

35

M
od

e 
di

ffe
re

nc
e 

∆
ω
 b

et
we

en
 p

um
p 

an
d 

sig
na

l m
od

e 
[k

Hz
]

Figure 2.12.: Parameter sweep of the difference ∆d between the minor axis’ of both cavities.
The plot shows that already for nm-size differences, a scanning region of ∆ω ≈ 10 kHz is possible.
Note, however, that an increasing ∆d automatically leads to smaller coupling coefficients since
the pump and signal mode become weaker in different cells. Therefore, this approach is not able
to provide large frequency differences above ∼ 50 kHz.

the Gertsenshtein overlap vanish since they contain integrals over the product of both fields.
Despite these obvious disadvantages, we investigated the possibilities of very small symmetry
breakings in the nm-region. Figure 2.12 shows a parameter sweep similar to the one in figure
2.8. Instead of the central tuning cell, we changed the minor axis of one cavity. The difference
to the minor axis of the other cell is varied from 0nm to 1000 nm. We see that this allows for
a much larger scanning region from ∼ 16 kHz to ∼ 26 kHz, i.e. ∆ω ≈ 10 kHz. For the small
displacements assumed here, the effect of destructive interference is small, which means that
the electromagnetic modes can in principle exist in both cells. However, with large symmetry
breakings, the fields become weaker in one cell which means that the coupling coefficients de-
crease. This analysis also shows that the required precision for constructing the real MAGO
cavity must be in the nm-regime.
We conclude that larger frequency differences above ∼ 30 kHz between pump and signal mode
are not easy to realize. Further efforts to find a better design and tuning mechanism are re-
quired. One option suggested by [3] is to add retractable fins to the cavity walls, which can be
placed in regions with high field gradients. This should allow for an effective scanning over a
large frequency range. Currently, the feasibility of using fins is investigated at FNAL. We point
out, however, that fins add sharp features to the otherwise smooth cavity design which could
considerably enhance the field emission noise. This effect is discussed in chapter 7.5.
Another possibility is to use an iris instead of the tuning cell as was done for the PACO pro-
totype [41]. This approach adds sharp features as well, but may may also lead to a broader
scanning range. Perhaps, a combination of different mechanisms might be advisable for the final
experiment.
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3. Cavities

This chapter introduces the basic concepts from cavity theory required for a full description
of the signal in a heterodyne cavity experiment. We start with a basic introduction to cavity
eigenmodes. Then we discuss the main characteristics of real cavities such as the bandwith
and the quality factor. The main part of this chapter is devoted to cavity perturbation theory.
Although some approaches to such a theory can be found in literature, we need a very specific
one, which can only be found in a rather outdated book by Goubau et al. [48]. We will therefore
describe the formalism in detail and further develop it with regard to its application in cavity
theory. Finally, we discuss the displacement of the cavity shell due to an external force density,
which can be done in the framework of elasticity theory.

3.1. Cavity Eigenmodes

The electromagnetic field is governed by the Maxwell equations [49]

∇ · E⃗ =
ρ

ϵ0
(3.1)

∇ · B⃗ = 0 (3.2)

∇× E⃗ = −∂B⃗
∂t

(3.3)

∇× B⃗ = µ0J⃗ + µ0ϵ0
∂E⃗

∂t
. (3.4)

In vacuum (ρ = 0, J⃗ = 0), the electric field E⃗ and magnetic field B⃗ fulfill the wave equations

∆E⃗ =
1

c2
∂2E⃗

∂t2
∆B⃗ =

1

c2
∂2B⃗

∂t2
. (3.5)

In a cavity, the walls now impose boundary conditions to these partial differential equations.
From general principles of electrodynamics, we found that these conditions are given by [49]

n⃗× E⃗|S = 0 n⃗ · B⃗|S = 0. (3.6)

We can solve the boundary value problem by expanding the electromagnetic field in eigensolu-
tions of eqn. 3.5, i.e.

E⃗(t, x⃗) =
∑
n

en(t)E⃗n(x⃗) B⃗(t, x⃗) =
∑
n

bn(t)B⃗n(x⃗). (3.7)

The spatial eigenmodes E⃗n(x⃗) are then governed by the Helmholtz equation. The full boundary
value problem (BVP) can be rewritten as

∆E⃗n(x⃗) + k2nE⃗n(x⃗) = 0

∆B⃗n(x⃗) + k2nB⃗n(x⃗) = 0

∇ · E⃗n = 0

∇ · B⃗n = 0

n⃗× E⃗n|S = 0

n⃗ · B⃗n|S = 0
(3.8)
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where the time-dependent eigenmodes have to fulfill the relations

∂2en
∂t2

= −ω2
nen

∂2bn
∂t2

= −ω2
nbn

with kn = cωn. However, formulating the BVP in this way causes some problems. One can show
[48, 50] that the eigensolutions E⃗n and B⃗n do not represent a complete set for all electromagnetic
fields satisfying eqn. 3.6. In order to change this, we need to weaken the boundary conditions.
The simplest way to do this is to require ρ = 0 and J⃗ = 0 only on the boundaries, but not inside
the cavity. We then get the modified BVP

∆E⃗n(x⃗) + k2nE⃗n(x⃗) = 0

∆B⃗n(x⃗) + k2nB⃗n(x⃗) = 0

∇ · E⃗n|S = 0

n⃗ · B⃗n|S = 0

n⃗× E⃗n|S = 0

n⃗× (∇× B⃗n)|S = 0.
(3.9)

The solutions have some useful properties [48, 50]:

• Non-zero real eigenfunctions exist only for a discrete spectrum of real eigenvalues.

• The degree of degeneracy is always finite.

• The eigensolutions are orthogonal and normalizable.

• The eigensolutions provide a complete set for the vector space of fields E⃗, B⃗, which satisfy
the boundary conditions in eqn. 3.6.

Furthermore, the solutions of BVP 3.8 are solutions of BVP 3.9 as well. We adopt the normal-
ization convention from [3] and define∫

Vcav

d3xE⃗n(x⃗)E⃗m(x⃗) = δnm

∫
Vcav

d3xE⃗2
n(x⃗) (3.10)∫

Vcav

d3xB⃗n(x⃗)B⃗m(x⃗) = δnm

∫
Vcav

d3xB⃗2
n(x⃗). (3.11)

The time-dependent functions en(t) and bn(t) can be expressed in this formalism for a given
field E⃗(t, x⃗) or B⃗(t, x⃗) by

en(t) =
[ ∫

Vcav

d3xE⃗2
n(x⃗)

]−1
∫
Vcav

d3xE⃗(t, x⃗)E⃗n(x⃗) (3.12)

bn(t) =
[ ∫

Vcav

d3xB⃗2
n(x⃗)

]−1
∫
Vcav

d3xB⃗(t, x⃗)B⃗n(x⃗). (3.13)

As we have already mentioned, the solution space of BVP 3.9 is larger than the solution space
of BVP 3.8. One can show that the additional modes have vanishing rotation, so they are called
irrotational modes. In Appendix B, we show that the full set of eigensolutions E⃗n and B⃗n can
be separated into solenoidal and irrotational solutions. That is, they fulfill

∆E⃗s
n + knE⃗

s
n = 0

∆B⃗s
n + knB⃗

s
n = 0

∇ · E⃗s
n = 0

∇ · B⃗s
n = 0

}
solenoidal modes

∆E⃗r
n + knE⃗

r
n = 0

∆B⃗r
n + knB⃗

s
n = 0

∇× E⃗r
n = 0

∇× B⃗r
n = 0

}
irrotational modes.

However, it was argued in [31] that it is not possible to resonantly amplify irrotational modes.
But in a heterodyne system, we can only measure a signal from modes that are resonant with
an external driver. Therefore, the irrotational can be neglected and it is sufficient to consider
the solenoidal modes only. We give a short proof of this statement in Appendix B.
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3.2. Energy and Quality Factor

We begin with a general consideration of the electromagnetic energy in a cavity eigenmode. The
details can be found in many standard textbooks like [49], we therefore only focus on the most
important aspects. First, recall that the total energy U(t) in a cavity is given by

U(t) :=
ϵ0
2

∫
Vcav

d3xE⃗2(t, x⃗) +
1

2µ0

∫
Vcav

d3xB⃗2(t, x⃗), (3.14)

where we treat E⃗(t, x⃗) and B⃗(t, x⃗) as real fields. We now want to show that the energy stored in
the E-field is the same as the energy stored in the B-field for a monochromatic solenoidal cavity
mode. For this purpose, we consider the monochromatic Maxwell equations

∇× E⃗n = cknB⃗n ∇× B⃗n =
kn
c
E⃗n. (3.15)

Integrating the standard identity

∇ · (B⃗n × E⃗n) = E⃗n · (∇× B⃗n)− B⃗n · (∇× E⃗n)

over the cavity volume and using Gauss’s theorem yields∫
∂Vcav

(B⃗n × E⃗n)dS⃗ =

∫
Vcav

d3xE⃗n(∇× B⃗n)−
∫
Vcav

d3xB⃗n(∇× E⃗n).

The left hand side vanishes because the boundary condition (see eqn. 3.6) on the cavity surface
gives (B⃗n × E⃗n)dS⃗ = (dS⃗ × E⃗n)B⃗n = 0. On the right hand side we can insert eqn. 3.15 to find

ϵ0

∫
Vcav

d3xE⃗2
n =

1

µ0

∫
Vcav

d3xB⃗2
n,

which proves the statement. Finally, we can express the energy as

Un(t) = Un =
ϵ0
2

∫
Vcav

d3xE⃗2
n(x⃗) =

1

2µ0

∫
Vcav

d3xB⃗2
n(x⃗), (3.16)

where we used e2n(t) + b2n(t) = 1. Note that the energy is now time-independent, so the calcula-
tions are consistent. Using Un, we can write the normalizations 3.10 and 3.11 as∫

Vcav

d3xε0E⃗n(x⃗)E⃗m(x⃗) = 2Unδnm =

∫
Vcav

d3x
1

µ0
B⃗n(x⃗)B⃗m(x⃗). (3.17)

The time-modes in eqn. 3.12 and 3.13 can be recast in this formalism as

en(t) =
ε0
2Un

∫
Vcav

d3xE⃗(t, x⃗)E⃗n(x⃗) (3.18)

bn(t) =
1

2Unµ0

∫
Vcav

d3xB⃗(t, x⃗)B⃗n(x⃗). (3.19)

If we consider an open system, it should be noted that the energy becomes in general time-
dependent and the time-average of Un(t) can be expressed (using the adiabatic approximation
⟨e2n(t)⟩ ≈ ⟨b2n(t)⟩) as

⟨Un(t)⟩ = 2Un⟨e2n(t)⟩ = 2Un⟨b2n(t)⟩.
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We need this generalized case because due to ohmic power losses through the cavity walls, the
average energy Un is not constant in time. The quality, i.e., how well the energy can be stored,
is described by the quality factor Qn defined by [49]

Qn := ωn
stored energy in mode n

power loss per cycle in mode n
. (3.20)

This leads to a standard decay law

dUn(t)

dt
=
ωn

Qn
Un(t) (3.21)

for the mode n. The left hand side is nothing but the signal power of the mode. If we pump the
cavity with an external oscillator, both sides become independent and we can write

Psig =
ωn

Qn
⟨Un(t)⟩ =

ωn

Qn
2Un⟨b2n(t)⟩ (3.22)

However, it is also useful to consider the general solution Un(t) = Une
− ωn

Qn
t
to eqn. 3.21. Using

eqn. 3.14, it can be written in terms of the E- and B-field, i.e.

E⃗′
n(x⃗, t) = E⃗n(x⃗, t)e

− ωn
2Qn

t
B⃗′

n(x⃗, t) = B⃗n(x⃗, t)e
− ωn

2Qn
t
.

The equations can be solved for the unprimed fields and then substituted into eqn. 3.5. We pick
the B-field and consider the result

∆B⃗′
n =

1

c2
∂2B⃗′

n

∂t2
+

1

c2
ωn

Qn

∂B⃗′
n

∂t

where we have assumed a large quality factor such that terms of order O(ω2
n/Q

2
n) can be ne-

glected. Now, the modes can be expanded using eqn. 3.7. It is further possible to apply
eqn. 3.9 since the spatial dependence for the primed field has not changed. The result for the
time-dependent mode bn(t) then reads

b̈n +
ωn

Qn
ḃn + ω2

nbn = 0 (3.23)

where we have dropped the prime as we will mainly work with the damped fields throughout
this thesis.
We will need later that quality factors can be separated into different components. For instance,
if the cavity is a closed system, than the signal mode has only one quality factor Q1. When
we couple a readout system with the signal mode, there is an additional loss determined by
a coupling quality factor Qcpl. Together with the internal quality factor Qint, the full quality
factor Q1 can then be written as [3]

1

Q1
=

1

Qcpl
+

1

Qint
. (3.24)

Sometimes it is useful to choose Qcpl ≈ Qint, which is called critical coupling. In other cases
it is better to use Qcpl ≪ Qint, which we denote as overcoupling. We will give more details in
chapter 7.
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3.3. Power Spectral Densities

In many cases, it is useful to consider the frequency dependence of a signal, which is represented
by the Power Spectral Density (PSD) [51]. Here we give a brief overview of the formalism since
we want to derive PSD’s for the signals and noises later in the thesis.
In general, the PSD of a function f is related to its time average via

⟨f2(t)⟩ = 1

(2π)2

∫
dωSf (ω), (3.25)

where we have adopted the conventions from [3, 43]. Furthermore, the time average can be
expressed in terms of the autocorrelation function

Gf (τ) := lim
T→∞

1

T

∫ T

0
dtf(t)f∗(t− τ)

since ⟨f2(t)⟩ = G(0). In general, we can define

G(t− t′) = ⟨f(t)f∗(t′)⟩.

The autocorrelation function and PSD are related by theWiener-Khinchin theorem, which states
that each is the Fourier transform of the other. We can therefore write

Sf (ω) = 2π

∫
dτe−iωτG(τ). (3.26)

Another important quantity is the ensemble average ⟨f(ω)f∗(ω′)⟩ defined as the fourier trans-
formation of G(t− t′). It is related to the PSD via

⟨f(ω)f∗(ω′)⟩ = δ(ω − ω′)Sf (ω).

We now want to discuss some special cases using this formalism. Consider two functions f(t) =
eiω1t and g(t) = eiω2t. The correlation between them can be quantified by

⟨f(τ)g∗(τ)⟩ = lim
T→∞

1

T

∫ T

0
dtf(t)g∗(t− τ) =

{
eiω1τ ω1 = ω2

0 ω1 ̸= ω2
.

We see that two periodic functions are correlated only when they have overlapping spectra.
This results in some useful rules for the PSD. First, consider a function f(ω) = h(ω)g(ω) with
periodic part g(ω) and a non-periodic part h(ω). The PSD can be than written as

Sf (ω) = |h(ω)|2Sg(ω). (3.27)

We can further show that the PSD of a function f(ω) = f1(ω) + f2(ω) with two uncorrelated
functions f1(ω) and f2(ω) in the sense that their spectra do not intersect can be written as

Sf (ω) = Sf1(ω) + Sf2(ω). (3.28)

Finally, we need the PSD of the function f(ω) = eiω0t, which can be calculated using eqn. 3.26.
The result is, as expected, given by

Sf (ω) = 4π2δ(ω − ω0). (3.29)

23



3. Cavities

One main goal of this thesis is to derive a PSD for bn(t). Once it has been found, the signal
power can be easily calculated with 3.22. This relation can be also written in the form

Psig =
1

(2π)2

∫
dωSsig(ω) =

1

2π2
ωn

Qcpl
Un

∫
dωSbn(ω). (3.30)

such that Ssig(ω) := 2Unωn/QcplSbn(ω). Note that we have to take the coupling quality factor
here since the signal power corresponds exactly to the energy loss through the readout coupling.

3.4. Cavity Perturbation Theory

When a GW propagates through a cavity, it changes the boundary conditions of the electromag-
netic field. The eigenmodes of the deformed cavity are in general different from the eigenmodes
of the unperturbed one. However, the GW strains are very small (≲ O(10−21)), so cavity per-
turbation theory can be applied. In other words, we express the perturbed modes as series
expansions of the unperturbed modes. We are then interested in the resulting overlap given by
the expansion coefficients. An important result of this procedure is that the perturbed mode E⃗′

n

appears to be strongly coupled to its unperturbed counterpart E⃗n, but also has contributions
from other modes E⃗m with m ̸= n.
There are several approaches to find such mode expansions. We will use the method given in
[48] as it is consistent with the method applied in [5]. The main idea is to find an expression
for the deformed boundary conditions at the position of the unperturbed shell. The advantage
of this approach is that we do not have to deal with a perturbed volume V ′

cav and can therefore
work with Vcav throughout the calculation.
We will discuss the formalism in detail here. The main reason is that [48] is a rather old and
outdated book, which further contains some inconsistencies. We present the arguments in a new
and improved way using a modern notation.

3.4.1. The Perturbed Boundary Condition

The unperturbed shell should have surface S, while the perturbed shell should have surface S′.
We note that the electromagnetic field in both cavities is governed by the BVP’s

∇× E⃗n = cknB⃗n ∇× E⃗′
n = ck′nB⃗

′
n

∇× B⃗n =
kn
c
E⃗n ∇× B⃗′

n =
k′n
c
E⃗′

n (3.31)

n⃗× E⃗n|S = 0 n⃗′ × E⃗′
n|S′ = 0.

We will use ωn = ckn instead of kn from now on. Our goal is to find the equivalent of the
boundary condition n⃗′ × E⃗′

n|S′ = 0 on S. Since S is supposed to be a (at least piece-wise)
smooth manifold, we can parameterize it with two parameters λ1 and λ2. We then define two
curves

u⃗1 := u⃗λ2(λ1) := S⃗(λ1, λ2)|λ2 fixed

u⃗2 := u⃗λ1(λ2) := S⃗(λ1, λ2)|λ1 fixed

such that the tangential vectors
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3. Cavities

t⃗1 :=
∂u⃗1
∂λ1

t⃗2 =
∂u⃗2
∂λ2

define a right-handed orthonormal system (⃗t1, t⃗2, n⃗), where n⃗ is the surface normal. The dis-
placement is described by ∆(x⃗), which gives the absolute value of the shell deformation at a
point x⃗ on the surface. By convention, it is ∆ < 0 for inward and ∆ > 0 for outward deforma-
tions. Throughout the following discussion, we will assume that |∆(x⃗)| ≪ 1.
We start by going along the infinitesimal distances

du⃗1 = t⃗1dλ1 du⃗2 = t⃗2dλ2

on the unperturbed surface S. We then move around a closed way using n⃗∆ to jump on the
perturbed surface S′. The path for both inward and outward deformation is shown in figure 3.1.
We consider the surface elements within the path, which are given by

dA⃗1 = ±t⃗2dλ1∆ dA⃗2 = ∓t⃗1dλ2∆

Note that the upper sign corresponds to the inward direction and the lower sign to the outward
direction. The key idea now is to apply Stokes theorem. It is useful to look at fig. 3.1 to track
the signs correctly. Weighting the surface elements dA⃗1 and dA⃗2 with ∇× E⃗′

n leads to

∇× E⃗′
n · dA⃗1 = ±∇× E⃗′

n · t⃗2∆dλ1

= ±E⃗′
n∆n⃗∓ E⃗′

n∆n⃗∓ dλ1
∂

∂λ1
(E⃗′

nn⃗∆)∓ E⃗′
nt⃗1dλ1

= ∓E⃗′
nt⃗1dλ1 ∓ dλ1

∂

∂λ1
(E⃗′

nn⃗∆)

Figure 3.1.: Construction of the boundary conditions for the perturbed mode. The idea is to
use the area elements dA⃗1,2, Stoke’s theorem and that E⃗′

n vanishes on the perturbed shell to find

an expression for n⃗× E⃗′
n|S on the unperturbed shell. This sketch should help to track the correct

signs for inward/outward deformation and t⃗1/t⃗2-direction respectively.
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∇× E⃗′
n · dA⃗2 = ∓∇× E⃗′

n · t⃗1∆dλ2

= ±E⃗′
n∆n⃗∓ E⃗′

n∆n⃗∓ dλ2
∂

∂λ2
(E⃗′

nn⃗∆)∓ E⃗′
nt⃗2dλ2

= ∓E⃗′
nt⃗2dλ2 ∓ dλ2

∂

∂λ2
(E⃗′

nn⃗∆),

where we have tailor expanded (E⃗′
nn⃗∆)(u⃗1,2+dλ1,2t⃗1,2) and used that E⃗′

n|′S = 0 on the perturbed
surface (see fig. 3.1). By eliminating dλ1 and dλ2, we find

E⃗′
n · t⃗1 = −∇× E⃗′

n · t⃗2∆− ∂

∂λ1
(E⃗′

nn⃗∆)

E⃗′
n · t⃗2 = ∇× E⃗′

n · t⃗1∆− ∂

∂λ2
(E⃗′

nn⃗∆).

These results can be now combined to

E⃗′
n = (E⃗′

nt⃗1) · t⃗1 + (E⃗′
nt⃗2) · t⃗2 + (E⃗′

nn⃗) · n⃗
= −(∇× E⃗′

nt⃗2∆) · t⃗1 + (∇× E⃗′
nt⃗1∆) · t⃗2

− ∂

∂λ1
(E⃗′

nn⃗∆) · t⃗1 −
∂

∂λ2
(E⃗′

nn⃗∆) · t⃗2 + (E⃗′
nn⃗) · n⃗.

On the shell of the unperturbed cavity this expression reads

E⃗′
n|S = n⃗× (∇× E⃗′

n)∆|S −∇(E⃗′
nn⃗∆)|S + (E⃗′

nn⃗) · n⃗|S ,

where we used the standard gradient in the coordinate system (⃗t1, t⃗2, n⃗) together with the
identity a⃗× (⃗b× c⃗) = b⃗ · (⃗a · c⃗)− c⃗ · (⃗a · b⃗). Inserting the monochromatic Maxwell equations 3.15
finally yields the perturbed version of the boundary condition n⃗× E⃗n|S = 0. The result is

n⃗× E⃗′
n|S = ∆(ωnB⃗n × n⃗)× n⃗|S +∇(E⃗nn⃗∆)× n⃗|S ,

so the perturbed electric field does not vanish in the unperturbed shell. This will now help us
to find a series expansion for E⃗′

n (or B⃗′
n) in terms of E⃗n (or B⃗n). Note that we have dropped

the primes of the right hand side as we assumed ∆ to be small so we can only consider leading
order terms.

3.4.2. Solving the Boundary Value Problem

According to the general idea of perturbation theory, we decompose the perturbed eigenmodes
as

E⃗′
n = E⃗n + σE⃗(1)

n +O(σ2)

B⃗′
n = B⃗n + σB⃗(1)

n +O(σ2)

ω′
n = ωn + σω(1)

n +O(σ2).

Substituting this into the perturbed BVP and using the unperturbed BVP (see eqn. 3.31), we

obtain a BVP for the first order corrections σE⃗
(1)
n and σB⃗

(1)
n . It can be written as

∇× σE⃗(1)
n − ωnσB⃗

(1)
n = σω(1)

n B⃗n (3.32)

∇× σB⃗(1)
n − ωn

c2
σE⃗(1)

n =
σω

(1)
n

c2
E⃗n (3.33)

n⃗× σE⃗(1)
n |S = ωnV⃗n|S . (3.34)
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where again we consider only leading order terms in ∆ and σ. To abbreviate notation, we have
defined

V⃗n := ∆(B⃗n × n⃗)× n⃗|S +
1

ωn
∇(E⃗nn⃗∆)× n⃗|S (3.35)

here. We can now expand the first order corrections in terms of the unperturbed modes, i.e.

σE⃗(1)
n =

∑
m

αnmE⃗m (3.36)

σB⃗(1)
n =

∑
m

βnmB⃗m (3.37)

σω(1)
n =

∑
m

κnmωm. (3.38)

The remaining task then is to find the coefficients αnm, βnm and κnm. We start by integrating
equation 3.32 over B⃗m such that∫

Vcav

d3xB⃗m · ∇ × σE⃗(1)
n − ωn

∫
Vcav

d3xB⃗m · σB⃗(1)
n = σω(1)

n δnm

∫
Vcav

d3xB⃗2
n. (3.39)

Equivalently, we can integrate equation 3.33 over E⃗m, leading to a similar expression with B⃗
and E⃗ exchanged. Using standard nabla identities and Gauss’s law, we can rewrite the first
integral of eqn. 3.39 as∫

Vcav

d3xB⃗m · ∇ × σE⃗(1)
n = −

∫
∂Vcav

dS⃗(B⃗m × σE⃗(1)
n ) +

∫
Vcav

d3xσE⃗(1)
n ∇× B⃗m

and similarly for the B-field. To evaluate the surface integral, we can use the boundary conditions
in 3.31 and 3.34. Note that there is now a difference between the E-field and B-field because

dS⃗(B⃗m × σE⃗(1)
n ) = n⃗ · (B⃗m × σE⃗(1)

n )dS = B⃗m · (σE⃗(1)
n × n⃗)dS = −ωnB⃗m · V⃗ndS

dS⃗(E⃗m × σB⃗(1)
n ) = n⃗ · (E⃗m × σB⃗(1)

n )dS = σB⃗(1)
n · (n⃗× E⃗m)dS = 0.

With these results and using eqn. 3.31, we can write equation 3.39 as

ωm

c2

∫
Vcav

d3xσE⃗(1)
n E⃗m − ωn

∫
Vcav

d3xσB⃗(1)
n · B⃗m

= σω(1)
n δnm

∫
Vcav

d3xB⃗2
n − ωn

∫
∂Vcav

dSB⃗m · V⃗n

ωm

∫
Vcav

d3xσB⃗(1)
n B⃗m − ωn

c2

∫
Vcav

d3xσE⃗(1)
n E⃗m

=
σω

(1)
n

c2
δnm

∫
Vcav

d3xE⃗2
n.

where we wrote the expression for the B-field as well. The next step is to insert the expansions
eqn. 3.36-3.37. We can use eqn. 3.17 to simplify the notation and arrive at

ωm

c2
αnm

2Um

ϵ0
− ωnβnm2µ0Um = δnmσω

(1)
n 2µ0Um +

2Um

ϵ0

ωn

c2
Cnm (3.40)

ωmβnm2µ0Um − ωn

c2
αnm

2Um

ϵ0
=
σω

(1)
n

c2
δnm

2Un

ϵ0
, (3.41)
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where a new coupling coefficient is defined by

Cnm := − c2

2Um

∫
∂Vcav

dSϵ0B⃗mV⃗n. (3.42)

To find the coefficients αnm, βnm and κnm, we have to solve eqn. 3.40 and 3.41. For this, we
have to distinguish between the case n = m and n ̸= m. We start with the latter, which yields

αnm =
ωmωn

ω2
m − ω2

n

Cnm (3.43)

βnm =
ω2
n

ω2
m − ω2

n

Cnm. (3.44)

The case n = m is a little more involved. From eqn. 3.40 and 3.41, we directly find

σω(1)
n = −1

2
ωnCnn.

This leads to a solution for κnm and an interim result for αnn and βnn. More precisely, we have

κnm = −1

2
δnmCnm

αnn = βnn +
1

2
Cnn.

However, we have to fix another degree of freedom to get a final result for the remaining coef-
ficients. That is because we have not yet chosen a normalization for the perturbed fields. An
appropriate choice is to define∫

Vcav

d3xE⃗′2
n :=

2Un

ϵ0
=

∫
Vcav

d3xE⃗2
n. (3.45)

By observing that
2Un

ϵ0
=

∫
Vcav

d3x(E⃗n + σE⃗(1)
n )2 = (1 + 2αnn)

2Un

ϵ0
,

we find that the diagonal coefficients are asymmetric and given by

αnn = 0 βnn = −1

2
Cnn. (3.46)

This seems to be a contradiction when we consider equation 3.17. It should be noted, however,
that the boundary condition for the unperturbed mode (eqn. 3.6) is no longer valid and we have
to use equation 3.34 instead. Repeating the calculation in chapter 3.2 would yield the same
result as given in equation 3.46.
Finally, we write the perturbed solutions in terms of the time modes en(t) and bn(t). Thus,
substituting the expansions 3.36-3.38 into eqn. 3.18 and 3.19, we end up with

e′n(t) = en(t) +
∑
m ̸=n

αnm
Um

Un
em(t) αnm =

ωnωm

ω2
m − ω2

n

Cnm (3.47)

b′n(t) = bn(t)−
1

2
Cnnbn(t) +

∑
m ̸=n

Um

Un
βnmbm(t) βnm =

ω2
n

ω2
m − ω2

n

Cnm (3.48)

ω′
n = ωn − 1

2
ωnCnn. (3.49)

The remaining task now is to determine the connection coefficient Cnn.
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3.4.3. The Connection Coefficient

We return to eqn. 3.35 and eqn. 3.42, which define the connection coefficient Cnm. The full
expression reads

Cnm = − c2

2Um

∫
∂Vcav

dSϵ0B⃗m

[
(∆B⃗n × n⃗)× n⃗+

1

ωn
∇(n⃗E⃗n∆)× n⃗

]
.

We can write this in a shorter form by using the boundary condition B⃗n · n⃗|S = 0 for the
unperturbed cavity. The left integral can be then written as∫

∂Vcav

dS · B⃗m(B⃗n × n⃗)× n⃗∆ = −
∫
∂Vcav

dS · B⃗mB⃗n∆

using the triple product expansion. For the right integral, we use that dS⃗ = n⃗dS together with
common nabla identities and the Helmholtz equation to find∫

∂Vcav

dS · ϵ0B⃗m∇(n⃗E⃗n∆)× n⃗

= ωm

∫
∂Vcav

dS · ϵ0
c2
∆(n⃗E⃗n)(n⃗E⃗m)−

∫
∂Vcav

dS⃗ · ∇ × ((n⃗E⃗n)B⃗m∆).

Using the boundary condition E⃗n,m × n⃗|S = 0, we can write in the first integral

(n⃗ · E⃗n)(n⃗ · E⃗m)|S = E⃗n · E⃗m|S .

The second integral vanishes due to Stoke’s law. Combining all results leads to the relation

Cnm =
1

2Um

∫
∂Vcav

dS ·∆
[ 1

µ0
B⃗nB⃗m − ωm

ωn
ϵ0E⃗nE⃗m

]
.

Note that in cases where ωm ≈ ωn, we get the simplified form

Cnm ≈ 1

2Um

∫
∂Vcav

dS ·∆
[ 1

µ0
B⃗nB⃗m − ϵ0E⃗nE⃗m

]
. (3.50)

3.5. Wall Deformation

A passing GW changes the spacetime and therefore also the boundary conditions of an electro-
magnetic resonator. This deformation is usually vary small (≲ O(10−21m)), so we can describe
the physical influence within cavity perturbation theory.
To describe the mechanical deformation properly, we need the framework of elasticity theory
[52, 53]. In earlier studies about heterodyne gravitational wave experiments [5, 38], this for-
malism was already investigated in detail. We start with the differential equation governing the
displacement field u⃗(t, x⃗) of an isotropic elastic solid under the influence of an external force
density f⃗(t, x⃗). It is given by

ρ(x⃗)
∂u⃗

∂t
− (λ+ µ)∇(∇u⃗)− µ∆u⃗ = f⃗(t, x⃗), (3.51)
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where ρ(x⃗) denotes the material density and λ and µ the materials first and second Lamé-
coefficients [38]. More details on the derivation of this formula can be found in Appendix A.
Assuming that the cavity walls are initially at rest, i.e. u⃗(t, x⃗) = ∂tu⃗(0, x⃗), we can use the
expansion theorem [5, 54] and make a seperation ansatz of the form

u⃗(t, x⃗) =
∞∑
l=1

ξ⃗l(x⃗)ql(t). (3.52)

We use the convention that the time-dependent modes ql(t) carry the amplitude of the wall
displacement and the spatial modes ξ⃗l(x⃗) are normalized such that∫

Vcav

d3xξ⃗l(x⃗)ξ⃗k(x⃗)ρ(x⃗) =Mδkl, (3.53)

where M is the cavity mass. Applying the separation ansatz to equation 3.51, it splits into an
eigenvalue equation

ω2
l ρ(x⃗)ξ⃗l(x⃗) + (λ+ µ)∇(∇ξ⃗l(x⃗)) + µ∆ξ⃗l(x⃗) = 0. (3.54)

and a differential equation governing the response to an external force given by

q̈l(t) + ω2
l ql(t) =

fl(t)

M
. (3.55)

Here, fl(t) is the generalized force density

fl(t) :=

∫
Vcav

d3xf⃗(t, x⃗)ξ⃗l(x⃗). (3.56)

So far, the external force f⃗(t, x⃗) is not specified. In chapter 4.5, we will identify it with the tidal
force of a passing GW.
It will be useful later to consider the Lagrangian of the mode ql(t), which is simply the harmonic
oscillator

LHO =
∑
l

(1
2
Mq̇2l (t)−

1

2
Mω2

l q
2
l (t) + ql(t)fl(t)

)
. (3.57)

Note that eqn. 3.55 and 3.57 do not properly describe the system as we also have to consider
damping effects due to mechanical losses. Corresponding dissipative terms have to be inserted
by hand. When we add an additional damping term according to eqn. 3.23 that contains a
mechanical quality factor Ql defined as in eqn. 3.20, it follows

q̈l(t) +
ωl

Ql
q̇l(t) + ω2

l ql(t) =
fl(t)

M
. (3.58)

Finally, we consider again the connection coefficient 3.50. In the language of elasticity theory, we
can identify dS ·∆ = dS⃗ · u⃗(t, x⃗), so Cnm describes the coupling between the mechanical and the
electromagnetic modes. Note that this has to be treated carefully, since we assumed a constant
deformation of the cavity in chapter 3.4 [5]. However, the frequency of the mechanical mode
is much smaller than the frequency of the electromagnetic mode. Therefore, we can use the
adiabatic theorem, i.e. the electromagnetic field can be always described with the eigenmodes
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of the current deformation.
The connection coefficient can be now rewritten as

Cnm = V −1/3
cav

√
Un

Um

∑
l

ql(t)C
l
nm (3.59)

where C l
nm is the normalized, dimensionless version of the connection coefficient given by

C l
nm =

V
1/3
cav

2
√
UnUm

∫
∂Vcav

dS⃗ · ξ⃗l(x⃗)
[ 1

µ0
B⃗n(x⃗)B⃗m(x⃗)− ϵ0E⃗n(x⃗)E⃗m(x⃗)

]
. (3.60)
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4. Gravitational Waves

In this chapter, we review the facts from linearized gravity that are relevant to build up the
theory of heterodyne cavity experiments. We start with a short overview of gravitational wave
(GW) physics, focusing on the problem of choosing the appropriate gauge. In this regard, we
give a detailed description of the proper detector frame, which turns out to be the best gauge
choice for calculating the response of a detector to a GW. Finally, we derive a formula for the
tidal force describing how a GW transfers energy into a cavity.
Most of the material covered in this chapter can be also found more detailed in standard text
books, such as [55, 56, 57].

4.1. Linearized Theory of Gravity

The general equations governing the interaction of matter with the underlying spacetime metric
gµν are given by the Einstein Equations

Rµν −
1

2
gµνR =

8πG

c4
Tµν . (4.1)

The Ricci Tensor Rµν and Ricci Scalar R describe the metric and therefore the space curvature,
whereas Tµν is the stress-energy tensor induced by an arbitrary energy density. Since the Einstein
Equation is non-linear, it is in general very difficult to calculate exact solutions. However, there
are several simplified cases allowing for an analytical treatment. An example is a system with
low energy density, so one can assume that the metric is approximately flat except for a small
perturbation, i.e.

gµν = ηµν + hµν gµν = ηµν − hµν (4.2)

The symmetric tensor hµν is called strain and describes small perturbations in the sense that
|hµν | ≪ 1 as well as |∂αhµν | ≪ 1. For instance, the strain caused by the Earth’s gravitational
field can be estimated as [57]

|hµν | ∼ |Φ| ≲ M⊙
R⊙

∼= 10−6.

where Φ is the gravitational potential.
These conditions require a specific choice of the coordinate frame, because the energy density
is not the same for every observer. So the invariance of general relativity under coordinate
transformation is broken. However, there is a remaining gauge freedom of the form

x′µ = xµ + ξµ(x) (4.3)

where ξµ(x) is a small four-vector in the same sense as hµν (so we can neglect all terms of order
O(ξ2) in the following). Using

gµν + h′µν = (gαβ + hαβ)
∂xα

∂x′µ
∂xβ

∂x′ν
,
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4. Gravitational Waves

it is straightforward to show that the strain hµν transforms as

h′µν = hµν − ∂νξµ − ∂µξν := hµν − Lξηµν . (4.4)

where Lξηµν := ∂νξµ + ∂µξν is the Lie derivative with respect to ξ [58]. We can apply this
derivative to an arbitrary tensor Tµν···

αβ··· = (T (1))µν···αβ···+(T (0))µν···αβ···, where 0 denotes the
unperturbed and 1 the perturbed part. It follows [58]

(T ′(1))µν···αβ··· = (T (1))µν···αβ··· − Lξ(T
(0))µν···αβ···,

which can be read as a general form of eqn. 4.4. We can directly see that a general tensor is
invariant under a gauge transformation (eqn. 4.3) if and only if it vanishes in flat space. One
example is given by the Riemann curvature tensor, i.e.

R′µ
αβν = Rµ

αβν . (4.5)

We now want to give a short review of the linearization procedure. The starting point is to
calculate the christoffel symbols, which are given by

Γµ
αβ =

1

2
(∂αhβ

µ + ∂βhα
µ − ∂µhαβ) (4.6)

in leading order. They can be used to determine the Riemann tensor, which becomes

Rµαβν =
1

2
(∂α∂βhµν + ∂µ∂νhαβ − ∂µ∂βhαν − ∂α∂νhµβ). (4.7)

We can plug this into eqn. 4.1, using that Rµν = Rα
µαν . Additionally, we assume the local

environment to be approximately a vacuum, i.e. Tµν = 0. Altogether, the linearized Einstein
equation yields

∂ν∂
αhµα + ∂µ∂

αhνα − ∂α∂αhµν − ∂µ∂νh
α
α − gµν(∂

α∂βhαβ − ∂β∂βh
α
α) = 0. (4.8)

The form of this equation, however, is not very practical. We therefore introduce the trace-
reversed strain defined by

h̄µν = hµν −
1

2
gµνh

α
α ⇔ hµν = h̄µν −

1

2
gµν h̄

α
α.

Substituting it into eqn. 4.8 leads to

∂α∂
αh̄µν + gµν∂

α∂βh̄αβ − ∂α∂ν h̄µα − ∂α∂µh̄να = 0. (4.9)

Now, we can use the gauge transformation given in eqn. 4.3 in order to reduce the initially ten
degrees of freedom encoded in the strain. Note that this has to be done carefully, since fixing
the gauge is equivalent to the choice of a particular coordinate system. We will address this
problem in detail later, but for we now look at the standard gauge, which can be found in many
standard textbooks such as [11, 56, 57, 59].
First, equation 4.9 can be brought into the form of a wave equation by applying the Lorentz
Gauge

∂µh̄µν = 0. (4.10)

33



4. Gravitational Waves

This reduces the number of degrees of freedom to six and the linearized Einstein equation yields

∂α∂αh̄µν = 0. (4.11)

However, there is still a residual gauge degree of freedom. It is given by a transformation
x′µ = xµ + ξµ(x) where ξµ fulfills the property

∂α∂αξ
µ(x) = 0. (4.12)

This fixes another four gauge degrees of freedom and we are therefore free to choose the strain
such that

h0µ = 0 hii = 0 ∂jhij . (4.13)

Since this metric is transverse and traceless, it is commonly referred to as TT-gauge. Note that
the total number of degrees of freedom is two, corresponding to two different polarizations of
the GW. Furthermore, it is h̄µν = hµν .
We will describe the physical meaning of this gauge in a moment, but we first introduce an
important mathematical tool called the equation of geodesic deviation.

4.2. The Equation of Geodesic Deviation

The equation of geodesic deviation describes how the distance between two freely falling ob-
servers on two different geodesics evolves dependent on a parameter λ, which can be usually
identified with the proper time τ or the proper distance s. The derivation shown here follows
[11]. We start with the standard geodesic equation for one of the two observers given by

∂2xµ

∂λ2
+ Γµ

αβ(x(λ))
∂xα

∂λ

∂xβ

∂λ
= 0. (4.14)

Now, assume that the geodesics of the second observer varies only slightly from the first one
and can be parametrized with x′µ(λ) = xµ(λ)+ ξµ(λ), where the small vector ξ(λ) connects two
points on the geodesics with same λ. It is ξµ(0) = 0, so that the obeservers cross at one point.
The idea now is to plug the parameterization into the geodesic equation and expand up to linear
order in ξ. Therefore, note that the christoffel symbol has to be expanded as

Γµ
αβ(x+ ξ) = Γµ

αβ(x) + ξν(∂νΓ
µ
αβ)(x) +O(ξ2),

neglecting all higher order terms in ξ. It is then straightforward to calculate

0 =
∂2(xµ + ξµ)

∂λ2
+ Γµ

αβ(x+ ξ)
∂(xα + ξα)

∂λ

∂(xβ + ξβ)

∂λ

=
∂2xµ

∂λ2
+ Γµ

αβ(x)
∂xα

∂λ

∂xβ

∂λ
+
∂2ξµ

∂λ2
+ 2Γµ

αβ(x)
∂xα

∂λ

∂ξβ

∂λ

+ ξν(∂νΓ
µ
αβ)(x)

∂xα

∂λ

∂xβ

∂λ
+O(ξ2).

Applying eqn. 4.14 again, we arrive at the equation of geodesic deviation

∂2ξµ

∂λ2
+ 2Γµ

αβ(x)
∂xα

∂λ

∂ξβ

∂λ
+ ξν(∂νΓ

µ
αβ)(x)

∂xα

∂λ

∂xβ

∂λ
= 0. (4.15)
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4.3. The TT-Gauge

We now discuss in detail the most important gauge for the theory of GWs. Although the strain
takes a simple form, we will argue that it is not a physical gauge and that we have to use a
different frame for the calculation of the detector response. However, we still need it, for example
to calculate Riemann tensors. The reason is, as we argued in chapter 4.1, that Riemann tensor
is invariant under gauge transformation.
Considering only the Lorentz gauged metric, the most general solution of eqn. 4.11 for the
trace-reversed strain h̄µν reads [59]

h̄µν =

∫
d3k

(
h̄µν(k⃗)e

i(k⃗x⃗−ωt) + h̄∗µν(k⃗)e
−i(k⃗x⃗−ωt)

)
with kµh̄µν = 0 and the dispersion relation ω(k⃗) = c|⃗k|. Applying the residual gauge eqn. 4.12,
this expression can be rewritten as

hTT
ij =

∑
r=+,×

∫
d3k

(2π)3
hr(k⃗, t)e

r
ij(k̂)e

−ik⃗x⃗, (4.16)

where we sum over the two remaining degrees of freedom, also called polarizations, of the GW.
Note that k̂ := k⃗/|⃗k|. The polarization tensors erij(k̂) are symmetric, transverse (k̂ie

r
ij = 0) and

traceless. They are defined by [59]

e+ij(k̂) = m̂im̂j − n̂in̂j

e×ij(k̂) = m̂in̂j + n̂im̂j ,

where m̂ and n̂ are unit vectors orthogonal to k̂ and to each other. The fourier modes hr(k⃗, t)
are real when the condition h∗r(k⃗, t) = hr(−k⃗, t) is fulfilled.
We consider the simple case of a monochromatic GW propagating along the z-direction. Here,
the fourier modes take the form

hr(k⃗, t) = (2π)3hr
(
δ3(k⃗ − kz ẑ)e

iωt + δ(k⃗ + kz ẑ)e
−iωt

)
and we can identify m̂ := x̂ as well as n̂ := ŷ. The full gravitational wave can be then written
as

hTT
ij (k⃗, t) =

h+ h× 0
h× −h+ 0
0 0 0

 cos(ωt− kzz). (4.17)

This metric additionally provides the corresponding line element ds given by

ds2 = −c2dt2 + dz2 +
(
1 + h+ cos(ωt− kzz)

)
dx2

+
(
1− h+ cos(ωt− kzz)

)
dy2 + 2h× cos(ωt− kzz)dxdy (4.18)

We now discuss the physical meaning of the TT-frame, following again [11]. This can be done
by considering the geodesic equation for a particle which is initially at rest at τ = 0, such that
dxi/dτ = 0|τ=0. Equation 4.14 than takes the form

∂2xi

∂τ2

∣∣∣∣
τ=0

= −1

2
(2∂0h0i − ∂ih00)

(∂x0
∂τ

)2
∣∣∣∣
τ=0

= 0,
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where the last step follows by applying the properties of the TT-gauge given in eqn. 4.13. So
we see that, if dxi/dτ = 0 at τ = 0, it remains zero at all times. It is instructive to think about
the TT-frame as a coordinate system which deforms itself in response to a GW such that masses
initially at rest do not move. One way to construct this frame is by defining the test masses
themselves as points of the coordinate system [11].
We can further analyse the distance between two coordinate points in the TT-frame by using
the equation of geodesic deviation. Therefore, we introduce a second freely falling test mass at
a small distance ξµ(τ) to the first one, such that dξi/dτ |τ=0 = 0. Plugging this into eqn. 4.15
yields

∂2ξi

∂τ2

∣∣∣∣
τ=0

= −
[
∂0hij

∂ξi

∂τ

]∣∣∣∣
τ=0

= 0.

So again, if dξi/dτ = 0 at τ = 0, the distance remains constant at all times.
It is important to note that ξi is a coordinate distance in this context and therefore generally not
equal to the proper distance s, which can be calculated with eqn. 4.18. We can see immediately,
that s does not vanish for a non-zero perturbation hµν and is therefore a better choice for
calculating physical effects.
However, in order to describe the detector response to a GW, it is convenient to have a coordinate
frame which is directly connected to the physical effects of hµν . So in the next chapter, we will
give a detailed discussion of how to find a better coordinate system.

4.4. The Proper Detector Frame

In a laboratory, a coordinate system is usually not defined by freely falling particles [11]. Instead,
it is more realistic to define the coordinate points with respect to a rigid ruler. In our case, this
would be the cavity walls (except for a deformation induced by the GW tidal forces, which we
consider later in this thesis).
A simple realisation is given by a freely falling frame, which can be described by Fermi normal
coordinates. It can be understood as the best approximation to flat Euclidean coordinates in
the vicinity of the observer. One way to derive Fermi normal coordinates is to use elementary
differential geometry and the equation of geodesic deviation. Since the last one is only valid for
small distances, the resulting metric should only be accurate close to the observer’s geodesic.
More details can be found in [57, 60].
However, because of the planet’s rotation and gravitational field, a detector on earth can be in
general not described by a freely falling frame. So more effort has to be done in order to include
these effects as well. Using again the equation of geodesic deviation, the result reads after a
lengthy calculation [11, 57, 61]

ds2 =
(
− (1 + a⃗x⃗)2 + (ω⃗ × x⃗)2 −R0i0j(G)x

ixj
)
dt2

+ 2
(
ωjxkϵijk −

2

3
R0ikj(G)x

jxk
)
dtdxi +

(
δij −

1

3
Rikjl(G)x

kxl
)
dxidxj , (4.19)

where a⃗ and ω⃗ are the local acceleration and rotation vectors.
In principle, we could now go on using this metric. Although it is an approximation for small
distances to the observer’s worldline, we often deal with GWs in the kHz to MHz regime, which
have a wavelength much longer than the detector size. But, since it may be possible to modify
the experiment to be sensitive for higher frequencies where the approximation is not further
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valid, we want to give a detailed discussion of the full solution. In future work, we may then
extend the theory by using the general metric. Note that this has already been done to some
extend in [4, 31], so there are already existent approaches.
We start with a brief historical outline. After Ni and Zimmermann found equation 4.19 in
1978 [61], efforts were made to find higher order terms or even the full metric in the proper
detector frame. They all used modifications of the equation of geodesic deviation and were only
able to find the third and fourth order terms of the expansion [62, 63]. At least in [63], an
iteration scheme was given for calculating in principle all orders of magnitude, but it is very
time-consuming to use.
The first successful derivation for all orders was made by Fortini and Gualdi in 1982 for the
special case of a plane GW in a flat background [64]. In 1994, the result was generalized by
Marzlin for all possible metric perturbations [65]. Since the derivation invented by Marzlin is
very compact and straightforeward, we want at least review the main ideas in the following. A
throughout discussion for the case of a plain gravitational wave can be found in [66].
We start by considering an observer moving along its own so-called reference geodesics gµ(τ).
It fulfills, as usual, the geodesic equation

d2gµ

dτ2
+ Γµ

αβ(g(τ))
dgα

dτ

dgβ

dτ
= 0,

where τ is the eigentime of the observer. Now, we take a family of geodesics yµ(τ, s), starting
from gµ(τ) such that yµ(τ, 0) = gµ(τ). They are called connecting geodesics and fulfill the
corresponding geodesic equation

d2yµ

ds2
+ Γµ

αβ(y(s))
dyα

ds

dyβ

ds
= 0, (4.20)

where s denotes to the proper distance. Furthermore, we require that reference and connecting
geodesics are perpendicular at the point of intersection, i.e.

dgµ

dτ

dyµ
ds

∣∣∣∣
s=0

= 0.

A sketch of the construction is given in fig. 4.1.
The strategy now is to decompose the geodesics in weak field approximation into a minkowskian
part M and a perturbed part h, i.e.

gµ(τ) = gµM (τ) + gµh(τ)

yµ(τ, s) = yµM (τ, s) + yµh(τ, s).

We can then solve eqn. 4.20 for yh(τ, s) by integration. The result is [65]

yµh(τ, s) = Cµ
2 (τ) + sCµ

1 (τ)− ηµνvβM

∫ s

0
ds′hβν(yM (τ, s′))

+
1

2
ηµνvαMv

β
M

∫ s

0
ds′

∫ s′

0
ds′′(∂νhαβ)(y

µ
M (τ, s′′)), (4.21)

where we have defined vµM := dyµ/ds|s=0 and Cµ
1 (τ) as well as Cµ

2 (τ) are some integration
constants that can be specified by defining a suitable coordinate system. In our case, we define
a local tetrad eµα̂(τ) such that

dxµ(τ)

dτ
= eµ

0̂
(τ) vµM =

dyµ

ds

∣∣∣∣
s=0

=: αîeµ
î
(τ).
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Figure 4.1.: Construction of Fermi Normal Coordinates. The tangential vectors of the con-
necting geodesics define the spatial axis of the coordinate system. They are perpendicular to the
worldline of the observer (reference geodesics). The tangential vector of the reference geodesics
defines the time direction.

Here, a hat denotes a coordinate index in the system of the tetrad. We further assume that the
observer is not in general free, but can be accelerated or rotated, i.e.

deµα̂
dτ

= −Ωµ
νe

ν
α̂.

The antisymmetric tensor Ωµν encodes both the Fermi-Walker transport and a spatial rotation
[57]. It is given by

Ωµν = aµuν − aνuµ + uαωβϵ
αβµν .

Finally, we define Fermi Normal coordinates by choosing

x0̂ := τ xî := sαî.

It is important to note that this choice of coordinate system is not unique. If hµν has a special
shape, it may be instructive to consider other options. Two alternatives for the case of a
monochromatic GW are discussed in [66].
With the precise definition of Fermi normal coordinates, we can further evaluate eqn. 4.21. The
integrals can be calculated by expanding the strain as

hîĵ(τ, s) =

∞∑
n=0

1

n!
(∂k̂1 · · · ∂k̂nhîĵ)(g)s

nαk̂1 · · ·αk̂n .

The indices have to be understood as xî := eµ
î
xµ and hîĵ := eα

î
eβ
ĵ
hαβ. The general result for the

connecting geodesics up to all orders then reads

yµ(x) = gµ(x0̂) + xî(eµ
î
(x0̂) + hî

µ(x0̂))

−
∞∑
n=0

1

(n+ 1)!
(∂k̂1 · · · ∂k̂nhî

µ)(g)xîxk̂1 · · ·xk̂n

+
1

2

∞∑
n=0

1

(n+ 2)!
(∂k̂1 · · · ∂k̂n∂

µhîĵ)(g)x
îxĵxk̂1 · · ·xk̂n .
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From here, it is in principle straightforeward to derive the general metric expansion in Fermi
normal coordinates. However, we have to use the transformation

gα̂β̂ =
∂yµ

∂xα̂
∂yν

∂xβ̂
gµν(y(x)).

which leads to a rather lengthy calculation. Along the way, it is important to remember that
the tetrad eµα̂(τ) = eµα̂(x

0̂) itself depends on the eigentime.
For the final result, we drop the hat above the index since everything is now written in Fermi
normal coordinates. As given in [65], we arrive at

g00 = −(1 + a⃗ · x⃗)2 + (ω⃗ × x⃗)2 − γ00 − 2(ω⃗ × x⃗)iγ0i − (ω⃗ × x⃗)i(ω⃗ × x⃗)jγij

g0i = (ω⃗ × x⃗)i − γ0i − (ω⃗ × x⃗)jγij (4.22)

gij = δij − γij .

where a⃗ and ω⃗ are again the acceleration and rotation vector respectively. The constants γ00,
γ0i and γij appear to be given the series expansions

γ00 =
∞∑
n=0

2

(n+ 3)!
xkxlxk1 · · ·xkn(∂k1 · · · ∂knR0k0l)(g) ·

[
(n+ 3) + 2(n+ 2)⃗ax⃗+ (n+ 1)(⃗ax⃗)2

]
γ0i =

∞∑
n=0

2

(n+ 3)!
xkxlxk1 · · ·xkn(∂k1 · · · ∂knR0kil)(g) ·

[
(n+ 2) + (n+ 1)⃗ax⃗

]
γij =

∞∑
n=0

2

(n+ 3)!
xkxlxk1 · · ·xkn(∂k1 · · · ∂knRikjl)(g) ·

[
n+ 1

]
.

Eqn. 4.22 gives the most general result for the local Lorentz frame in generalized gravity. Al-
though it is very cumbersome to use, it is recommended as a starting point for all calculations.
In most cases, it is possible to simplify the equations, but that strongly depends on the system.
If the strain hµν , for instance, varies on scales much larger than the detector, we are allowed to
cut off the series expansion at some order. In case it is sufficient cut off at second order, one
obtains eqn. 4.19, so the theory appears to be consistent with previous results.
In our experiment, we deal with GWs with frequencies in the range ∼ O(kHz-GHz). The
gravitational field of the earth is almost static and varies on typical frequencies of f ≲ 0.1Hz
[59]. That means, we can well separate the GW signal from the background field and do
not need to consider those effects. We therefore set a⃗ = 0 and ω⃗ = 0 and end up with
the metric [66]

h00 = −2
∞∑
n=0

n+ 3

(n+ 3)!
xkxlxk1 · · ·xkn(∂k1 · · · ∂knR0k0l)(g) (4.23)

h0i = −2
∞∑
n=0

n+ 2

(n+ 3)!
xkxlxk1 · · ·xkn(∂k1 · · · ∂knR0kil)(g) (4.24)

hij = −2
∞∑
n=0

n+ 1

(n+ 3)!
xkxlxk1 · · ·xkn(∂k1 · · · ∂knRikjl)(g). (4.25)

This metric has to be used when we deal with GW in the GHz-range as it was done e.g. in [31].
However, we concentrate on GW with frequencies equal or lower than 1GHz throughout this
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4. Gravitational Waves

thesis, which have a larger wavelength than the detector size. Therefore, we assume that we can
cut off the expansion at second order, although the approximation may not be accurate enough
to describe the metric close to 1GHz. We postpone a detailed analysis to future work, some
discussions can be already found in [4, 31]. In the approximated form, the resulting metric then
corresponds to the solutions given in [57, 60] and reads

ds2 = (−1−R0i0j(G)x
ixj)dt2 − 4

3
xixjR0ikj(G)dtdx

k

+ (δkl −
1

3
xixjRkilj(G))dx

kdxl

in terms of the invariant line element. As we saw in chapter 4.1, the Riemann curvature tensor
is invariant under a gauge transformation. Therefore, we can express the metric of the proper
detector frame in terms of the TT-gauged strain, which simplifies the calculations a lot. It turns
out that the only non-vanishing component using eqn. 4.13 is given by

R0i0j = −1

2
ḧTT
ij ,

so the metric now reads

ds2 = −dt2
(
1− 1

2
ḧTT
ij (g)xixj

)
+ dxidxjδij .

Finally, the metric of the proper detector frame in the long wavelength regime has only one
non-zero component, namely

h00 =
1

2c2
ḧTT
ij (g)xixj . (4.26)

Note that we have turned to SI units in the last equation.

4.5. Gravitational Waves and Tidal Forces

There are two ways a GW can couple to a cavity that is loaded with an electromagnetic field.
The first way is a direct coupling via the Gertsenshtein effect, while the second one is an indirect
interaction through the cavity walls. We describe these couplings in detail in chapter 2.1. Since
the GW is an oscillation of spacetime, it exerts a tidal force on the surface resulting in a small
deformation. In this chapter, we want to show how this tidal force can be calculated, following
[11, 57].
Consider a particle A in the proper detector frame. We define a coordinate system such that
the particle sits at the origin, i.e., it is located at x0 = τ and xj = 0. A second particle B has a
small separation ξµ to A, so the system can be described via the equation of geodesic deviation
(eqn. 4.15). We get

d2ξµ

dτ2
+ 2Γµ

0β(x)
dξβ

dτ
+ (∂νΓ

µ
00)(x)ξ

ν = 0. (4.27)

In the proper detector frame, by construction, we have at xj = 0 that

Γµ
0β(τ, 0) = 0 ⇒ (∂τΓ

µ
0β)(τ, 0) = 0. (4.28)

Substituting this into equation 4.27 and evaluating at xj = 0, we get

d2ξi

dτ2
+ ξj(∂jΓ

i
00) = 0.
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4. Gravitational Waves

Note that we only consider the spatial components of the displacement. Using equation 4.28,
we can write the Riemann tensor as

Ri
0j0 = ∂jΓ

i
00.

After renaming ξi → xi, the equation of geodesic deviation becomes

d2xi

dτ2
= −xjRi

0j0.

This equation describes the trajectory of a (nearby) particle B as seen from an observer sitting
at particle A. Since force and acceleration are equivalent, we can directly translate it into a force
density. Note that for one specific particle, we have

F i = m
d2xi

dτ2
= −mxjRi

0j0.

In the continuum limit, this can be written as a force density [38, 57]

fi = −ρ(x)R0i0j(x)xj . (4.29)

Note that this equation is valid in the proper detector frame and the Riemann tensor can be
calculated in an arbitrary gauge.
Finally, we want to compute the force density 4.29 for the special case of a GW travelling in
z-Direction. We therefore insert eqn. 4.17 into eqn. 4.29. For a GW with a wavelength much
longer than the detector, we can drop the spatial dependence and replace cos(ωgt − kzz) with
eiωgt. The resulting generalized force density reads

f(t) = −1

2
ω2
gMV 1/3

cav

(
h+Γ+ + h×Γ×

)
eiωgt =: F (t)eiωgt

where we have defined the normalized GW coupling strength parameters1 as

Γ+ :=
V

−1/3
cav

M

∫
Vcav

d3xρ(x⃗)
(
xξl,x(x⃗)− yξl,y(x⃗)

)
(4.30)

Γ× :=
V

−1/3
cav

M

∫
Vcav

d3xρ(x⃗)
(
xξl,y(x⃗) + yξl,x(x⃗)

)
(4.31)

and M is again the cavity mass. We will later need the fourier transform F (ω), which is given
by

F (ω) = −1

2
ω2
gMV 1/3

cav

(
h+Γ+ + h×Γ×

)
2πδ(ω). (4.32)

1We have adopted the notation from [5]
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5. The Equations of Motion

As mentioned earlier, the GW can couple to an electromagnetic resonator in two different ways.
First, there is a indirect coupling via a mechanical deformation of the cavity walls. This can
be treated with a combination of elasticity theory and cavity perturbation theory. A detailed
treatment can be found in chapter 3.4 and 3.5. Another possible interaction is the direct coupling
of the GW to the electromagnetic field, also known as the inverse Gertsenshtein effect [27, 28].
When we derive the fundamental equations of motions governing the interaction of a GW with
a SCRF cavity, we must consider both effects. We start with a detailed treatment of the
Gertsenshtein effect and use it as a starting point to derive the Lagrangian of the full system.
This Lagrangian can be then splitted into two separate parts which finally lead to the equations
of motion in the usual manner.

5.1. The Gertsenshtein Effect

In 1962, Mikhail E. Gertsenshtein discovered that an electromagnetic wave travelling through a
static transverse magnetic field can induce a GW with the same frequency [27]. The coupling
was further investigated by Yakov B. Zel’dovic in 1973 [28]. Sometimes, this effect is therefore
called Gertsenshtein-Zel’dovic effect, but we will just refer to it as the Gertsenshtein effect as it
is common in the literature.
In particular, we are interested in the opposite interaction, namely of a GW propagating through
an electromagnetic field. By the fundamental principle of time reversal symmetry, this should
induce a photon with the same frequency as the GW. We call this the inverse Gertsenshtein
effect. The starting point is the Einstein-Maxwell action of the form [31]

SEM =

∫
d4x

√
−g

(
− 1

4
gµαgνβFµνFαβ − gµνjµAν

)
.

To apply linearized gravity (see chapter 4.1, in particular eqn. 4.2), we note that the determinant
can be written as

g = det(ηµν + hµν) = −1 + h00 − h11 − h22 − h33 = −1− h

where h := hα
α is defined as the trace of the strain. It directly follows that

√
−g = 1 + h/2 +

O(h2), so we can write the action as

SEM =

∫
d4x

(
1 +

h

2

)(
− 1

4
(ηµα − hµα)(ηνβ − hνβ)FµνFαβ − (ηµν − hµν)jµAν

)
= SFLAT + SSOURCE + SCOUPLING
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5. The Equations of Motion

After rearranging all terms in the interaction and integrating by parts, we can identify the
various segments of the action as

SFLAT =

∫
d4x

(
− 1

4
ηµαηνβFµνFαβ

)
SSOURCE =

∫
d4x

(
− jµAµ

)
SCOUPLING =

∫
d4x

(
− 1

2
jµeffAµ − h

2
jµAµ + hµνjµAν

)
,

where the effective current jµeff is given by

jµeff = ∂ν
(h
2
Fµν + hναF

αµ − hµαF
αν
)
. (5.1)

Note that a GW does not only couple to the electromagnetic field, but also to the residual
current jµ. We can therefore not just add jµeff to the maxwell equations.
The current, however, is supposed to vanish, as we consider an evacuated cavity without any
residual moving charges. We can read off the remaining Lagrangian from the action and find

LEM = −1

4
ηµαηνβFµνFαβ − 1

2
jµeffAµ (5.2)

From here, we can in principle start to add cavity perturbation theory in order to obtain the full
Lagrangian. But before we do this, we want to have a closer look on the jµeff. The equations of
motion following from SEM are not directly obvious, because the effective current is a function
of the gauge field, i.e. jµeff = jµeff(Aµ). While the terms SFLAT + SSOURCE lead to the familiar
Maxwell equations

∂µF
µν = jν ,

we have to be careful evaluating SCOUPLING. We therefore start by considering the variation,
which reads

δSCOUPLING = −
∫

d4x
(
− 1

2
∂ρ
∂(jµeffAµ)

∂(∂ρAν)
+

1

2
∂ρ∂σ

∂(jµeffAµ)

∂(∂ρ∂σAν)

+
1

2
jνeff +

h

2
jν − hµνjµ

)
δAν .

after partial integration. Using basic index manipulations, it is now straightforward to show the
identity

∂ρ∂σ
∂(jµeffAµ)

∂(∂ρ∂σAν)
= ∂ρ

∂(jµeffAµ)

∂(∂ρAν)
+ jνeff.

Hence, we can cancel the derivative terms and get

δSCOUPLING = −
∫

d4x
(
jνeff − h

2
jν + hµνjµ

)
δAν .

So we finally end up with the modified Maxwell equations

∂µF
µν = jν + jνeff +

h

2
jν − hµνjµ.
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5. The Equations of Motion

Without residual currents, they reduce to ∂µF
µν = jνeff. We can see that, although the current

depends on the gauge field, we obtain the same form of the Maxwell equations in vacuum as for
a normal current.
However, there is one important difference between the effective current in eqn. 5.1 and a normal
current. When we consider the behaviour under coordinate transformation, we find

j′µeff =
dx′µ

dxα
jαeff +

dx′µ

dxα
dxγ

dx′ν
d2x′ν

dxβdxγ
h

2
Fαβ,

so, unlike jµ, the effective current does not transform as a proper tensor. This implies that
we cannot use the invariance condition (see chapter 4.1), which has guaranteed that a tensor is
invariant under gauge transformations in linearized theory if it vanishes in flat space. So jµeff is
not gauge independent and we have to evaluate it in the proper detector frame to get physically
reasonable results.

5.2. The Full Lagrangian

We now consider the full Lagrangian of the heterodyne cavity (HC) system. It consists of both
the electromagnetic Lagrangian LEM in eqn. 5.2 and the mechanical Lagrangian in eqn. 3.57.
Due to the appearance of the gauge field in the current term, we cannot simply integrate out
the spatial degrees of freedom in LEM. We therefore start with

LHC =

∫
Vcav

dV
[
− 1

4
F ′
µνF

′µν − 1

2
jµeffA

′
µ

]
+
∑
l

(1
2
Mq̇2l (t)−

1

2
Mωlq

2
l (t) + ql(t)fl(t)

)
, (5.3)

where a prime denotes that the fields are perturbed by the deformation ql(t). The wall dis-
placement is not just governed by the GW, but also, as we show later, by the electromag-
netic field in the cavity. Thus, it is much larger than the GW strain and we can assume
h(t) ≪ ql(t) ≪ en(t), bn(t). The perturbation of the gauge field leads to an additional term of
order O(hql), which can be neglected. Therefore, the gauge field can be considered as unper-
turbed. We split the Lagrangian into

LEM = −1

4
FµνF

µν − 1

2
jµeffAµ (5.4)

Lmech =
1

2

∑
n

2Un(e
′2
n (t)− b′2n (t)) +

∑
l

(1
2
Mq̇2l (t)−

1

2
Mω2

l q
2
l (t) + ql(t)fl(t)

)
, (5.5)

where LEM governs the dynamics of the electromagnetic fields and Lmech the displacement. Note
that we have integrated out the spatial degrees of freedom in eqn. 5.5, using the invariant

1

4
F ′
µνF

′µν =
1

2

( 1

µ0
B⃗′2(t, x⃗)− ε0E⃗

′2(t, x⃗)
)

of the field strength tensor as well as eqn. 3.7 and eqn. 3.17. Furthermore, note that we have
removed the primes in eqn. 5.4. The reason is that we will apply cavity perturbation theory on
the level of the equations of motions, which will turn out to be more convenient. For reasons
of consistency, both should lead to the same physics. As we will in chapter 5.2.2, this is indeed
the case.
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5. The Equations of Motion

5.2.1. Equation of Motion for the Electromagnetic Field

We start with the equations of motion (EoM) governing the dynamics of the electromagnetic
field. We have already derived them in chapter 5.1 and found the modified Maxwell equations
∂µF

µν = jνeff. As usual, they can be written as

∇E⃗ = ρeff

∇× B⃗ − 1

c2
∂tE⃗ = j⃗eff

where ρeff := j0eff is the effective charge density. We can now take the curl of Ampéres law in
order to derive the wave equation. Consider the interim result

−∆B⃗ +∇(∇B⃗)− 1

c2
∂t∇× E⃗ = ∇× j⃗eff.

When we apply the mode decomposition 3.7, it is not directly obvious that ∇B⃗n = 0. For
irrotational modes, this is in general not true. But, we argued in chapter 3.1 and appendix B,
that it is not possible to resonantly enhance the irrotational modes. They are therefore irrelevant
for our analysis. So, we proceed as usual with ∇B⃗n = 0 and write∑

m

(
bm(t)∆B⃗m(x⃗)− 1

c2
b̈m(t)B⃗m(x⃗)

)
= −∇× j⃗eff.

Using ∆B⃗n = −ω2
n/c

2B⃗n together with eqn. 3.17 and integrating both sides over
∫
Vcav

d3xB⃗n(x⃗)
leads to

b̈n(t) + ω2
nbn(t) = Jn(t). (5.6)

The projected current on the right hand side is defined by

Jn(t) :=
c2

2Un

∫
Vcav

d3x
1

µ0
B⃗n(x⃗)∇× j⃗eff(t, x⃗). (5.7)

At this stage, we can impose cavity perturbation theory. When bn(t) is replaced by b′n(t) (see
eqn. 3.48), we can write eqn. 5.6 as

b̈′n + ω′2
n b

′
n

= b̈n − 1

2
Cnnb̈n +

∑
m̸=n

βnm
Um

Un
b̈m + ω2

n

(
1− 1

2
Cnn

)2(
bn − 1

2
Cnnbn +

∑
m ̸=n

βnm
Um

Un
bm

)
.

In leading order, eqn. 5.6 can be used to rewrite the time derivatives as Cnmb̈m = −Cnmω2
mbm+

O(q2l ). Further calculations and the use of eqn. 3.44 and eqn. 3.59 give

b̈n + ω2
nbn = ω2

nV
−1/3
cav

∑
l

ql

(
C l
nnbn +

∑
m̸=n

√
Um

Un
C l
nmbm

)
+ Jn(t).

In a heterodyne setup, only the pump mode (n = 0) and the signal mode (n = 1) contribute to
the dynamics. Furthermore, we assume that only one mechanical mode is relevant and couples
to the GW. In the following, this mode is denoted again as ql, meaning that l is now some fixed
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integer. The result is a set of two coupled EoMs describing the dynamics of the pump mode as
well as of the signal mode, i.e.

b̈0(t) + ω2
0b0(t) = ω2

0V
−1/3
cav ql(t)

(
C l
00b0(t) +

√
U1

U0
C l
01b1(t)

)
+ J0(t) (5.8)

b̈1(t) + ω2
1b1(t) = ω2

1V
−1/3
cav ql(t)

(
C l
11b1(t) +

√
U0

U1
C l
01b0(t)

)
+ J1(t). (5.9)

To solve these equations, we need a third EoM for the mechanical mode. The derivation of this
differential equation is devoted to the next section.

5.2.2. Equation of Motion for the Displacement Field

To derive an EoM for the displacement field, we have to use the Lagrangian from eqn. 5.5. We
will see that the resulting interaction between the GW and the displacement field is determined
not only by the tidal force (eqn. 4.32), but also by a back-action term induced by the electro-
magnetic field itself. The term was first described in [5], but is not discussed in [4].
We start by inserting the perturbed expansions 3.47 and 3.48 into the mechanical Lagrangian
5.5. By considering only the leading order terms, we get∑

n

Un(e
′
n
2 − b′

2
n)

=
∑
n

Un

(
e2n + 2

∑
m̸=n

ωnωm

ω2
m − ω2

n

Cnm
Um

Un
enem − b2n + Cnnb2n − 2

∑
m̸=n

ω2
n

ω2
m − ω2

n

Cnm
Um

Un
bnbm

)
.

As in the previous chapter, we can assume that only the pump and signal mode contribute to
the Lagrangian and all other modes can be neglected. Including the decomposition 3.59 of the
connection coefficients, we can write the mechanical Lagrangian as

Lmech = U0(e
2
0 − b20) + U1(e

2
1 − b21) +

1

2
Mq̇2l −

1

2
Mω2

l q
2
l + ql(fl + fabl ) (5.10)

Again, only one mechanical mode with fixed index l is considered. We can see that the displace-
ment is driven by an additional force density given by the back-action

fabl (t) := V −1/3
cav

(
U0C

l
00b

2
0(t) + U1C

l
11b

2
1(t) + 2

√
U0U1C

l
01b0(t)b1(t)

)
. (5.11)

It gives rise to two self-coupling terms and one cross-coupling term, which will later have an
influence on the resonance structure of the signal. From eqn. 5.10, it is straightforward to
calculate the EoM. We finally end up with

q̈l(t) + ω2
l ql(t) =

1

M

(
fl(t) + fbal (t)

)
. (5.12)

Note that we can also derive eqn. 5.8-5.9 from the Lagrangian 5.10 (without the Gertsenshtein
current). This must be the case, as both approaches shown here should lead to the same
physics, except for the current which appears only in the electromagnetic Lagrangian 5.4. So
the formalism is consistent.
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5.3. The Full Set of Equations

So far, we have derived the equations 5.8, 5.9 and 5.12 which describe the dynamics of a het-
erodyne cavity system responding to a passing GW. However, as already shown in [5], there are
still some missing components which have to be added by hand. First, we have to include a
dissipative terms as in eqn. 3.23 and 3.55. But there is also an additional oscillator driving the
cavity which have to be considered. In an idealized case, this external driver should only couple
to the pump mode. However, there is always a small leakage to the signal mode which cannot
be avoided. As in [43], we denote the coupling of the oscillator the the signal mode as ϵ. A
typical value for MAGO is ϵ = O(10−7).
When we add the additional terms to the Lagrangian, we have to be careful about the correct
normalizations and also have to account for the energy loss due to the finite quality factors. The
final coupled system of EoM reads

b̈0 +
ω0

Q0
ḃ0 + ω2

0b0 = ω2
0V

−1/3
cav ql

(
C l
00b0 +

√
U1

U0
C l
01b1

)
+ J0 +

ω0

Q0

√
Ud

U0
ḃd (5.13)

b̈1 +
ω1

Q1
ḃ1 + ω2

1b1 = ω2
1V

−1/3
cav ql

(
C l
11b1 +

√
U0

U1
C l
01b0

)
+ J1 + ϵ

ω1

Q1

√
Ud

U1
ḃd. (5.14)

q̈l +
ωl

Ql
q̇l + ω2

l ql =
1

M

(
fl + fbal

)
. (5.15)

and can be considered, together with eqn. 5.11, as one of the main results of this thesis. In the
following chapters, we will solve this set of equations for the special case of a monochromatic
GW propagating in z-direction.

5.4. The Projected Current

Before we solve the system 5.13-5.15, we want to take a closer look on the projected current
Jn(t). As already discussed, it is not invariant under gauge transformation and we therefore
have to choose a gauge which properly describes the physical effects of a passing GW. In chapter
4.4, we argued that the proper detector frame is the correct choice for this task. So inserting
the strain 4.26 into eqn. 5.1 yields

ρeff = j0eff = −∂i
(1
2
h00F

0i
)
+ ∂i

(
h00F

0i
)
=

1

2
∇(h00E⃗)

jieff = −∂ν
(1
2
h00F

iν
)
− ∂0

(
h00F

0i
)
= −1

2

(
∂t(h00E⃗)

)i − 1

2

(
∇× (h00B⃗)

)i
In the heterodyne case, the GW couples to the pump mode (n = 0), so we can identify the E-
and B-field with E⃗0(t, x⃗) and B⃗0(t, x⃗). The result is

ρeff(t, x⃗) =
1

2
∇(h00(t, x⃗)E⃗0(t, x⃗)) (5.16)

j⃗eff(t, x⃗) = −1

2
∂t(h00(t, x⃗)E⃗0(t, x⃗))−

1

2c2
∇× (h00(t, x⃗)B⃗0(t, x⃗)), (5.17)

where we turned to SI-units. Before using j⃗eff to calculate the generalized current Jn, we consider
the boundaries of the resonator. Since the cavity is assumed to have a superconducting shell,
we can argue that the effective current will be compensated by the shell electrons. This is
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approximately true because the typical GW frequency is much smaller than the pump mode
frequency, so we can use the adiabatic approximation (see also chapter 3.4, where we argued
that the shell deformation can be treated as constant in cavity perturbation theory for the same
reason). From these considerations, we can deduce the boundary condition n⃗ × j⃗eff(t, x⃗)|S = 0
for the effective current. This allows us to simplify the projected current Jn. Expanding the
integrand in eqn. 5.7 as

B⃗n(x⃗)∇× j⃗eff(t, x⃗) = −∇(B⃗n(x⃗)× j⃗eff(t, x⃗)) + j⃗eff(t, x⃗)∇× B⃗n(x⃗) (5.18)

and using Gauss’s theorem, we find

Jn(t) = − c2

2Un

∫
∂Vcav

dS⃗
1

µ0
B⃗n × j⃗eff +

c2

2Un

∫
Vcav

d3x
1

µ0
j⃗eff∇× B⃗n.

Due to the boundary condition, we can argue that n⃗ · (B⃗n × j⃗eff)|S = −B⃗n · (n⃗× j⃗eff)|S = 0, so
the surface term vanishes. Applying eqn. 3.15 and inserting the effective current 5.17 yields

Jn(t) = −1

4

ωn

Un

[ ∫
Vcav

d3xε0E⃗n(x⃗)(∂th00(t, x⃗)E⃗0(t, x⃗))

+

∫
Vcav

d3x
1

µ0
E⃗n(x⃗)(∇× (h00(t, x⃗)B⃗0(t, x⃗)))

]
From now on, we consider the special case of a monochromatic GW propagating in z-direction.
That means, we insert the strain 4.26 in the proper detector frame assuming that the GW has
the same form as in eqn. 4.17. It is convenient to use complex notation, i.e. to replace cos(ωgt)
with eiωgt. Although we are so far working in real space, we will convert the differential equations
into complex space in chapter 6.1. Then, the strain can be decomposed as

h00(t, x⃗) = −
ω2
g

2c2
(
h+(x

2 − y2) + 2h×xy
)
eiωgt =: −

ω2
g

2c2
H0(x⃗)e

iωgt

with H0(x⃗) = h+(x
2 − y2) + 2h×xy. We can also decompose the pump field using eqn. 3.7,

i.e. E⃗0(t, x⃗) = e0(t)E⃗0(x⃗) and B⃗0(t, x⃗) = b0(t)B⃗0(x⃗). It is sufficient to set e0(t) = b0(t) = eiω0t,
since the pump field is later supposed to be stabilized. The projected current can be then finally
written as

Jn(t) = H

√
U0

Un

ω2
g

8c2

(
iωn(ω0 + ωg)η

E
0n + ω2

nη
B
0n

)
ei(ω0+ωg)t (5.19)

where we have defined the normalized overlap factors

ηE0n :=
1

H
√
U0Un

∫
Vcav

d3xH0(x⃗)ε0E⃗0(x⃗)E⃗n(x⃗) (5.20)

ηB0n :=
1

H
√
U0Un

∫
Vcav

d3xH0(x⃗)
1

µ0
B⃗0(x⃗)B⃗n(x⃗). (5.21)

We also have introduced a GW normalization H defined as

H :=

√
1

Vcav

∫
Vcav

d3xH2
0 (x⃗). (5.22)
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Note that the overlap factors are dimensionless and can in principle be optimized to be of order
O(1). The GW normalization, however, includes the strain and has dimension [H] = m2. It has
a typical order of O(≲ 10−20m2).
We will need the Fourier transformation of the projected current (eqn. 5.19) in chapter 6.2. It
can be written as

Jn(ω) := Hω2
g

√
U0

Un

(
κnη

E
0n + λnη

B
0n

)
2πδ(ω − (ω0 + ωg)) (5.23)

with coefficients

κn := i
ωn

8c2
(ω0 + ωg) (5.24)

λn :=
ω2
n

8c2
(5.25)

Eqn. 5.24 and 5.25 show, that the couplings of the GW to the electric and magnetic fields are
equal for ωn ≈ ω0 + ωg. For different values, the magnetic coupling remains constant while
the electric coupling scales with ωg. It is important to note that this is an artefact of the
long wavelength approximation, where we assumed ωg ≪ ω0, ω1 (for n=1). The scaling of κ
is therefore small in the considered frequency regime. In case it is necessary to describe the
Gertsenshtein coupling for GW in the GHz regime, this formalism breaks down and we have to
use the full metric expansion 4.23-4.25. This has been done e.g. in [31, 4].
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6. Solving the Equations of Motion

In this chapter we want to solve eqn. 5.13-5.15 for a monochromatic GW interacting with
the heterodyne cavity detector. We will show, that a full treatment of the dynamics leads to
an additional back-action term in the denominator of the Breit-Wigner response of the signal
mode. This will lead to a suppressed signal close to the mechanical resonances. We will further
calculate all couplings for the MAGO cavity using numerical simulations with COMSOL and
CST. We then justify why it is sufficient to consider only one resonant mode in eqn. 5.13-5.15.
The calculations presented in this chapter are mainly based [5]. However, we will go into
much more detail and make more general assumptions. For example, we will not assume that
the diagonal components of the coupling coefficients vanish and also include the Gertsenshtein
effect.

6.1. Lorentz Force Detuning

In general, eqn. 5.13-5.15 are very hard to solve. It is therefore expedient to make a couple of
assumptions in order to simplify the equations of motion.
We start by neglecting all fast oscillating terms. In particular, we will neglect terms with eiω0t

or eiω1t in case there is another term oscillating with eiωgt. This is justified since we assume
ωg ≪ ω0, ω1 and take the time-average in the end of the calculation, where fast oscillating terms
vanish due to the Riemann-Lebesgue lemma.
Another helpful simplification is that we assume the external oscillator to be perfectly resonant
to the pump mode and to dominate over the perturbative signal. This is true for general GWs as
their signal is more than twenty orders of magnitude weaker as the oscillator amplitude. Within
this framework, we can directly solve eqn. 5.13 by setting b0(t) = cos(ω0t).
It is further convenient to convert the EoM’s into complex notation. To properly convert the
quadratic terms, we use the identity

Re
(
A
)
Re

(
B
)
=

1

2
Re

(
AB +AB∗).

Since all functions in eqn. 5.13-5.15 are supposed to be approximately monochromatic, we can
factorize out the peak frequency from the solutions. An appropriate ansatz is therefore given by

b0(t) = bd(t) = Re
(
eiω0t

)
(6.1)

b1(t) = Re
(
A1(t)e

i(ω0+ωg)t
)

(6.2)

ql(t) = Re
(
Ql(t)e

iωgt
)

(6.3)

fl(t) = Re
(
Fl(t)e

iωgt
)

(6.4)

J1(t) = Re
(
K1(t)e

i(ω0+ωg)t
)
. (6.5)
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Inserting these assumptions into the right hand side of eqn. 5.15 yields

1

M

[
Fl(t)e

iωgt +
V

−1/3
cav

2
U0C

l
00

(
1 + ei2ω0t

)
+
V

−1/3
cav

2
U1C

l
11

(
|A1(t)|2 +A2

1(t)e
i2(ω0+ωg)t

)
+ V −1/3

cav

√
U0U1C

l
01

(
A1(t)e

i(2ω0+ωg)t +A1(t)e
iωgt

)]
.

Neglecting all fast oscillating terms, we can rearrange eqn. 5.15 as1

Q̈l(t) + αlQ̇l(t) + βlω
2
l Q(t) =

1

M

[
(Fl(t) + S(t))eiωgt +

V
−1/3
cav

2
U0C

l
00

]
e−iωgt (6.6)

with the function

S(t) :=
V

−1/3
cav

2

(
U1C

l
11|A1(t)|2e−iωgt + 2

√
U0U1C

l
01A1(t)

)
. (6.7)

We will need S(t) later. For now, we want to investigate the influence of the constant term

V
−1/3
cav U0C

l
00. The coefficients αl and βl are given by

αl := 2iωg +
ωl

Ql
(6.8)

βl := ω2
l − ω2

g + iωg
ωl

Ql
. (6.9)

Performing a Fourier transformation of eqn. 6.6 gives

Ql(ω) =
1

M

1

βl − ω2 + iωαl

(
Fl(ω) + S(ω) + 2π

V
−1/3
cav

2
U0C

l
00δ(ω + ωg)

)
(6.10)

We can transform this back into time space. The last term gives rise to a constant deformation
of the cavity walls. We find

ql(t) = q′l(t) +
V

−1/3
cav U0C

l
00

2M

with q′l(t) defined as the time-dependent part of ql(t) given by

q′l(t) := Re
( 1

2πM

∫
dω

Fl(ω) + S(ω)

βl − ω2 + iωαl
ei(ω+ωg)t

)
.

A constant and small shift leads to a change of the eigenmodes according to cavity perturbation
theory (see chapter 3.4). However, this shift is not time-dependent and can be therefore simply
absorbed into the eigenfrequency and eigenmodes of the cavity. Experimentally, we have to
tune the oscillator and readout such that they stay on resonant with the pump and signal mode
respectively.
The constant shift of the cavity walls due to the electromagnetic fields is known as Lorentz Force
Detuning. It is mentioned in [3] as well, but it is not further specified there. The shift of the
eigenfrequencies can be calculated and reads

ω′
0 = ω0

(
1− 1

2

V
−1/3
cav U0C

l
00

2M
C l
00

)
ω′
1 = ω1

(
1− 1

2

V
−1/3
cav U0C

l
00

2M
C l
11

)
,

1We use the same symbol Ql for the displacement and the quality factor. To distinguish them, we always write
Ql(t) or Ql(ω) to show that the displacement is time-dependent while the quality factor Ql is constant in time.
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6. Solving the Equations of Motion

so also the frequency difference ω1 − ω0 changes.
In our further analysis, however, we will ignore the Lorentz Force Detuning and simply assume
that the shift is already contained in b0, b1 and ω0, ω1. An immediate consequence is that the
remaining wall displacement is only governed by the GW and hence, ql(t) and b1(t) are of order
O(h). In leading order, we can therefore neglect the first term of S(t) in eqn. 6.7. The solution
6.10 for Ql(ω) can be then written compactly as

Ql(ω) =
1

M

Fl(ω) + V
−1/3
cav

√
U0U1C

l
01A1(ω)

βl − ω2 + iωαl
. (6.11)

6.2. The Signal PSD for Monochromatic Gravitational Waves

In order to find a signal PSD, the remaining task is to solve eqn. 5.14 together with eqn.
6.11. Since we have absorbed the back-action of the signal mode into the eigenmodes and
eigenfrequencies, we argued in the previous chapter that both ql and b1 are of order O(h) now.
However, this is strictly speaking not correct since the oscillator has a small coupling to the
signal mode as well. So we also expect a field of order ϵ in the signal mode, which oscillates
with frequency ω0. The readout is assumed to be able to separate this oscillation from the
GW frequency at ω0 + ωg. That means, we can neglect the first term of eqn. 5.14 as it is of
order O(h2).
By the same argument, we could also neglect the oscillator-to-signal mode coupling, i.e. the
last term in eqn. 5.14. But, it is reasonable to keep this term as there could be phase noise
according to the oscillator which we want to consider later. Hence, we have to solve

b̈1(t) +
ω1

Q1
ḃ1(t) + ω2

1b1(t) = V −1/3
cav

√
U0

U1
ω2
1C

l
01ql(t)b0(t) + J1(t) + ε

ω1

Q1

√
Ud

U1
ḃd(t).

By converting it into complex notation and using eqn. 6.1-6.5, we can rewrite this differential
equation as

Ä1(t) + α1Ȧ1(t) + β1A1(t)

=
(√U0

U1
γ1Ql(t)e

i(ω0+ωg)t +K1(t)e
i(ω0+ωg)t + ϵiω0

ω1

Q1

√
Ud

U1
eiω0t

)
e−i(ω0+ωg)t

with constants

α1 :=
ω1

Q1
+ 2i(ω0 + ωg) (6.12)

β1 := ω2
1 − (ω0 + ωg)

2 + i
ω1

Q1
(ω0 + ωg) (6.13)

γ1 := V −1/3
cav ω2

1C
l
01. (6.14)

A Fourier transformation leads to

A1(ω)(−ω2 + iωα1 + β1) =

√
U0

U1
γ1Ql(ω) +K1(ω) + i2πϵ

ω1

Q1
ω0

√
Ud

U1
δ(ω + ωg).

This equation can be easily solved by using eqn. 6.11. The result for A1(ω) reads

A1(ω) =

√
U0

U1

γ1Fl(ω)

MΛ1(ω)
+
J1(ω + (ω0 + ωg))

Λ2(ω)
+ i2πϵ

ω1

Q1
ω0

√
Ud

U1

δ(ω + ωg)

Λ2(ω)
, (6.15)
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where we have expressed the projected Gertsenshtein current again in terms of J1(ω). The
resonance structures are given in terms of Λ1(ω) and Λ2(ω). We obtain

Λ1(ω) :=
(
β1 − ω2 + iωα1

)(
βl − ω2 + iωαl

)
− γ1γl (6.16)

Λ2(ω) := Λ1(ω)
(
βl − ω2 + iωαl

)−1
(6.17)

with the new constant

γl =
1

M
V −1/3
cav U0C

l
01. (6.18)

We can immediately see a strong damping in the resonance function 6.16 due to the term γ1γl. It
appears because we have included the back-action of the electromagnetic field from the passing
GW in our calculation, which gives an additional contribution to the displacement. Note that
this phenomenon was already considered in [5], but not in [4].
We can recast eqn. 6.15 in terms of b1(ω) = A1(ω − (ω0 + ωg)) and plug in eqn. 4.32 and 5.23,
i.e.

b1(ω) =

√
U0

U1

(
−
ω2
g

2

V
1/3
cav γ1(h+Γ+ + h×Γ×)

Λ1(ω − (ω0 + ωg))
+Hω2

g

κ1η
E
01 + λ1η

B
01

Λ2(ω − (ω0 + ωg))

)
2πδ(ω − (ω0 + ωg))

+ iϵ
ω1

Q1
ω0

√
Ud

U1

2πδ(ω − ω0)

Λ2(ω − (ω0 + ωg))

With eqn. 3.27-3.28 and 3.30, we can translate this result into a PSD. Note that, using the time
average, we find

⟨b21(t)⟩ = ⟨Re
(
A1(t)e

i(ω0+ωg)t
)2⟩ = 1

2
⟨Re

(
|A1(t)|2 +A2

1(t)e
i2(ω0+ωg)t

)
⟩ ≈ 1

2
⟨|A1(t)|2⟩, (6.19)

where fast oscillating terms are again neglected. The signal PSD then yields

Ssig(ω) =
ω1ω

4
gU0

Qcpl

∣∣∣∣∣ 12 ω2
1C

l
01(h+Γ+ + h×Γ×)

Λ1(ω − (ω0 + ωg))︸ ︷︷ ︸
Mechanical Coupling

− H(κ1η
E
01 + λ1η

B
01)

Λ2(ω − (ω0 + ωg))︸ ︷︷ ︸
Gertsenshtein Coupling

∣∣∣∣∣
2

4π2δ(ω− (ω0 + ωg)). (6.20)

It scales, apart from the complicated resonance structure, with Ssig ∼ ω4
g , so the signal increases

for higher frequencies. Eqn. 6.20 also highlights the different couplings of the GW to the
heterodyne system. In the mechanical term, we have two couplings for the two GW polarizations
and in the Gertsenshtein term, we distinguish between the coupling to the E- and B-Field.
The oscillator PSD can be written independently because it has a peak at the pump mode
frequency and is therefore well separated from the signal. We find

Sosc(ω) = ϵ2
Q1

Qcpl

ω3
1

Q3
1

ω2
0

UdSbd(ω)

|Λ2(ω − (ω0 + ωg))|2
, (6.21)

where we kept the spectral density for Sbd(ω) general for later purposes when we consider
phase noise from the oscillator (see chapter 7.4). For a monochromatic source, we simply have
Sbd(ω) = 4π2δ(ω − ω0).
To conclude this discussion, we finally integrate eqn. 6.20 using eqn. 3.25 to get the total signal
power. The assumed delta-nature of the GW spectrum simplifies the resonance structure and
we end up with

Psig =
ω1

Qcpl
ω4
gU0

∣∣∣∣∣12 ω2
1C

l
01(h+Γ+ + h×Γ×)

β1βl − γ1γl
− βlH(κ1η

E
01 + λ1η

B
01)

β1βl − γ1γl

∣∣∣∣∣
2

. (6.22)
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6.3. Gravitational Wave - Mechanical Coupling

In this chpter we investigate the coupling between the GW and the mechanical eigenmodes of
the cavity. We already computed the corresponding coupling parameters in chapter 4.5. They
are given by

Γ+ :=
V

−1/3
cav

M

∫
Vcav

d3xρ(x⃗)
(
xξl,x(x⃗)− yξl,y(x⃗)

)
Γ× :=

V
−1/3
cav

M

∫
Vcav

d3xρ(x⃗)
(
xξl,y(x⃗) + yξl,x(x⃗)

)
.

Note that the displacement field should be appropriately normalized (see eqn. 3.53). For an
arbitrary field ξ′l(x⃗), this can be done by calculating

ξ⃗l(x⃗) = ξ⃗′n(x⃗)×
(

1

M

∫
Vcav

d3xξ⃗2n(x⃗)ρ(x⃗)

)− 1
2

. (6.23)

From general considerations (see e.g. [38]), it is known that GWs have the strongest coupling
to the quadrupole modes of a spherical cavity. For MAGO, we therefore expect to find a few
well defined modes with particularly strong coupling. Furthermore, the GW is uniform over the
cavity volume due to the long wavelength approximation. The mechanical modes, instead, have
much shorter wavelength and the number of nodes increases for higher eigenfrequencies. This
suppresses the overlap integral and we expect a scaling such as [4]

|Γi(ωl)| ∼
1

ω2
l

.

However, the MAGO cavity is not a sphere and the GW will therefore have at least a small
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Figure 6.1.: This plot shows the coupling coefficients for the coupling of a GW propagating in
z-direction of the cavity to the mechanical eigenmodes. (a): Linear plot of the coupling: It can be
seen that there are a few well defined modes with particularly strong coupling. They correspond to
the quadrupole modes. (b): Exponential plot of the coupling which better shows the distribution
of all modes.

54



6. Solving the Equations of Motion

(a) ωl = 0.051 kHz,
Γ+ = −0.028

(b) ωl = 4.098 kHz,
Γ× = −0.019

(c) ωl = 9.597 kHz,
Γ× = −0.008

Figure 6.2.: This plot shows the modes with the strongest coupling to a GW propagating in
z-direction, which corresponds to the direction along the central cylinder. The red regions are
strongly displaced while the blue ones have a smaller offset. We show the displacement in ar-
bitrary units, since the field is normalized in the pre-processing. (a): Lowest lying mode with
ωl = 0.051 kHz and a strong coupling |Γ+| = 0.028: It is a mode of the coupled system and cannot
be directly identified with a mode on the sphere. (b): Quadrupolar mode with ωl = 4.098 kHz
and |Γ×| = 0.019: This is an example of an uncoupled mode which corresponds to spherical
eigenmodes. (c): Higher order mode with ωl = 9.597 kHz and |Γ×| = 0.008: The displacement
field changes on very small scales, so there might already be subtle numerical issues which we
could not yet identify. To confirm the results, an analysis with higher resolution is needed, which
was not the scope of this master thesis.

coupling to all modes. We could therefore search for differences and similarities between the
mechanical modes of MAGO-like and spherical cavities. For this reason, we did a numarical
evaluation of eqn. 4.30 and eqn. 4.31 for the first 1,000 mechanical eigenmodes. The displace-
ment fields were computed with COMSOL. Both for reasons of time and data size, we were
forced to use a rough grid (Nx ×Ny ×Nz = 30× 30× 90) for the displacement field. It turned
out that this resolution was sufficient for all modes up to ∼ 15 kHz, which corresponds to the
first 860 eigenmodes. We had to discard all higher solutions where the number of the wave nodes
was too large to be resolved.
We show the results of the analysis in figure 6.1 both in a linear and a logarithmic plot. In
the linear plot (fig. 6.1a), we can see that there are a few well defined modes that strongly
couple to the incoming GW. Furthermore, the coupling strength of these modes drops towards
higher frequencies. In the logarithmic plot (fig. 6.1b), this decrease is less pronounced, but the
distribution of the couplings is better resolved.
It is again important to note that we only consider GWs that propagate along the z-axis of the
cavity. For future analysis, it is important to take GWs from other directions into account as
well. For generally coupled spheres, this has already been done in [3]. It was not within the
scope of this master thesis to do the same for the MAGO geometry and has to be postponed to
future work.
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6.4. Mechanical - Electromagnetic Coupling

As discussed in detail in chapter 3.5, the coupling between the mechanical displacement and the
electromagnetic modes is governed by the dimensionless connection coefficient

C l
01 =

V
1/3
cav

2
√
U0U1

∫
∂Vcav

dS⃗ · ξ⃗l(x⃗)
[ 1

µ0
B⃗0(x⃗)B⃗1(x⃗)− ϵ0E⃗0(x⃗)E⃗1(x⃗)

]
. (6.24)

Note that, unlike the other couplings, it is described by a surface integral. It can be solved
numerically by using the approximation

C l
01 ≈

V
1/3
cav

2
√
U0U1

∫ N

i=1

Acav

N
∆l(x⃗i)

[ 1

µ0
B⃗n(x⃗i)B⃗m(x⃗i)− ε0E⃗n(x⃗i)E⃗m(x⃗i)

]
, (6.25)

where we discretize the cavity as a lattice with N points. The displacement ∆l is given by

∆l(x⃗i) = n⃗(x⃗i) · ξ⃗l(x⃗i),

where n⃗ is the shell normal field and ξ⃗ is normalized corresponding to eqn. 6.23.
It is argued in [4] that the mechanical modes couple to the electromagnetic modes through the
cavity surface and therefore allow for a frequency independent scaling, i.e. |C l

01(ωl)|2 ∼ 1. Thus,
there are also mechanical modes at higher orders with large coupling |C l

01|2 ∼ O(1). This is
different to the GW-electromagnetic couplings that we discussed in the previous chapter, which
decrease for higher modes.
As for the GW-mechanical coupling, we have plotted the first 860 coupling coefficients for
the TE011 mode of the MAGO cavity in figure 6.3. The scaling independence is not clearly
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(b) Logarithmic Plot

Figure 6.3.: This plot shows the connection coefficients for the coupling between the mechanical
and electromagnetic modes. We show the coefficients for the first 860 mechanical modes and
the symmetric and antisymmetric fields of the electromagnetic TE011 mode. (a): Linear plot
of the coupling: It can be seen that most couplings are very small with one clear outlier at
ωl = 5.147 kHz. (b): Exponential plot of the coupling: Up to ∼ 5 kHz, the couplings are randomly
distributed. Above, we can see a clear pattern and a higher mode density, which could correspond
to spherical modes of the two cells.
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(a) ωl = 5.147 kHz,
Cl

01 = 0.724
(b) ωl = 5.958 kHz,

Cl
01 = 0.162

(c) ωl = 10.726 kHz,
Cl

01 = 0.061

Figure 6.4.: This plot shows the mechanical modes with the strongest coupling to the elec-
tromagnetic TE011 modes. The red regions are strongly displaced while the blue ones have a
smaller offset. We show the displacement in arbitrary linear units, since the field is normalized
in pre-processing. (a): This mode with ωl = 5.147 kHz has a surprisingly strong coupling of
C l
01 = 0.724, which is much higher then all other couplings. We do not provide a further anal-

ysis here, but we note that a high symmetry together with an optimal match between the peak
displacement and the B-field amplitudes could be responsible for the high overlap. (b): Higher
mode with ωl = 5.958 kHz and C l

01 = 0.162. (c): Very high mode with ωl = 10.726 kHz and
C l
01 = 0.061: Note that the small scaling of the displacement field could cause numerical errors

and the calculation may not be sufficiently accurate.

pronounced and there is one considerable outlier at ωl = 5.147 kHz. We show the modes of the
strongest couplings in figure 6.4.
The logarithmic plot (figure 6.3b) shows that the couplings are randomly distributed up to 5 kHz.
Above, the density suddenly increases and the distribution shows an underlying pattern. A
further analysis of the behaviour was not the scope of this master thesis and has to be postponed
to future work. However, a yet speculative explanation is that the low modes correspond to
modes of the full system whereas the higher ones (above ∼ 5 kHz) could be identified with
spherical modes. The behaviour was already expected by the MAGO collaboration [2], although
they did not provide simulations of their own.
It should be noted that three different software tools were used to evaluate eqn. 6.25. The
electromagnetic fields are simulated with CST whereas COMSOL is used for the mechanical
displacement. Finally, the sum is calculated with Python. This procedure is inefficient and
in the future, it is advisable to make the calculations with only one program. It would make
the analysis much faster such that also other properties of the eigenmodes could be analyzed
without considerable effort.

6.5. Gravitational Wave - Electromagnetic Coupling

Finally, we also include an analysis of the Gertsenshtein coupling. As shown in chapter 5.4, the
coupling can be parametrized by two overlap factors

ηE01 :=
1

H
√
U0U1

∫
Vcav

d3xH0(x⃗)ε0E⃗0(x⃗)E⃗1(x⃗) (6.26)

ηB01 :=
1

H
√
U0U1

∫
Vcav

d3xH0(x⃗)
1

µ0
B⃗0(x⃗)B⃗1(x⃗). (6.27)
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Since the electromagnetic field is fixed to the symmetric and antisymmetric TE011-mode, the
overlap factors depend on the GW only. Again, we assume that the GW propagates along the
z-direction and postpone an analysis of other directions to future work.
We can evaluate the integrals 6.26 and 6.27 numerically using the E- and B-fields from the CST
simulation. It is instructive to choose a fixed polarization, such that we have four different values

ηE,+01 ≈ 0.15 ηE,×01 ≈ 0.23 ηB,+
01 ≈ 0.32 ηB,×

01 ≈ −0.08.

Note that the overlap factors can also become negative. The numerical calculation confirms
that the couplings are of order O(0.1) for both polarizations. For the sensitivity estimates, we
assume a mixed polarization and set ηE,B01 = 0.2.
For the signal power, the strain norm H is important as well. It is given in eqn. 5.22 and can
be parametrized for a GW propagating in z-direction as

H+ = h+ ×

√
1

Vcav

∫
Vcav

d3x(x2 − y2)2 ≈ h+ × 12.08m2

H× = h× ×

√
1

Vcav

∫
Vcav

d3x(2xy)2 ≈ h× × 12.26m2,

where we have distinguished between the different polarizations. We will use h+ = h× =: h0
and H = H+ = H× = h0 × 12m2 in the remaining analysis.

6.6. A Comment on Multiple Modes

So far we assumed that the signal power is driven only by one mechanical mode. In the exper-
iment, however, we expect many different modes to contribute. This has important effects on
the signal power and on the damping term γ1γl.
From the analytic perspective, it is not sufficient to just add up the signal powers of the indi-
vidual modes, as the resonant functions change as well. A careful reanalysis of the calculations
shown in chapter 5 and 6 for multiple modes yields

Λk
1(ω) = (β1 − ω2 + iωα1)(βk − ω2 + iωαk)− (βk − ω2 + iωαk)

∑
l

γlγ1
βl − ω2 + iωαl

Λ2(ω) = β1 − ω2 + iωα1 −
∑
l

γlγ1
βl − ω2 + iωαl

,

where k labels the resonance function for the fixed eigenmode k. For simplicity, we assumed
that there is always one specific mode that dominates the signal. This allows us to consider only
the k = l-terms in the sum and to calculate the total power by adding up the most dominant
modes. However, it should be noted that a more detailed analysis is required here, which we
postpone to future work.

6.7. Signal Power

In this chapter, we provide numerical calculations for the total noise power. As in [4], we assume
h0 = 10−20, which is a rather optimistic strain2. An overview about all parameters that have

2Note that the highest strain measured in GW interferometers is h0 ∼ O(10−21).
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ωl = 5.24kHz, |C l
01|= 0.72
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(b) Broadband

Figure 6.5.: Signal power for the 98 modes with the strongest couplings. The mode with highest
coupling |C l

01| ≈ 0.72 dominates in the broadband experiment, but not in the scanning setup.

been used can be found in Appendix E.
First of all, we analyse the contributions of the various mechanical eigenmodes to the signal.
Without damping, it can be shown from general considerations that the mode with the strongest
coupling to the GW should dominate. In order to investigate whether this is also the case when
damping is included, we have calculated the signal power (eqn. 6.22) for the 98 eigenmodes with
the largest couplings3 for |C l

01|, |Γ+| and |Γ×|. The result is shown in figure 6.5. We see that
there is no mode that dominates over the whole frequency space. For instance, the mode with
the strongest coupling (|C l

01| ≈ 0.72 at ωl ≈ 5.24 kHz) only dominates in the 100 kHz − 1MHz
range. So the damping term γlγ1 has a strong influence on the hierarchy of contributions to the
total signal from different modes. Since it is γ1γl ∼ |C l

01|2, this is not surprising because modes
with high couplings are also considerably damped.
Note that above ∼ 1MHz, the Gertsenshtein effect starts to dominate and the mechanical
coupling becomes irrelevant. This behaviour can be found for both the scanning as well as the
broadband approach, where the frequency difference is held fixed at 50Hz, which corresponds
to the lowest lying mechanical mode. This is different to the results of [4], where the mechanical
coupling dominates over the full frequency range. However, [4] assumed idealized coupling
parameters (∼ O(1)) and neglected the damping. In figure 6.6, we show the results with and
without the damping term in the resonance function. Both the mechanical and Gertsenshtein
signals are shown for the simulated couplings and a more optimistic case where we assumed
|C l

01| = 1 and |Γ+| = |Γ×| = 0.5 for one mode at ωl = 5kHz4. We see that the latter leads to a
mechanical signal that is about six orders of magnitude stronger than the simulations. A careful
optimization of the cavity design in order to enhance the couplings can therefore lead to a much
better sensitivity. However, it has to be noted that the mechanical noise will also increase. We
will put that into account in chapter 8.
Furthermore, since the Gertsenshtein effect is independent of the mechanical couplings, we can
see that it is much more dominant above 1MHz for the simulated values. In the optimistic

3More precisely, we have chosen all mechanical eigenmodes with |Cl
01| > 0.001, |Γ+| > 0.0001 and |Γ×| > 0.0001.

4Note that we will later keep the simulated values for the mechanical noise.
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(b) Optimistic case
|Cl

01| = 1, |Γ+| = |Γ×| = 0.5.

Figure 6.6.: Signal power for the mechanical and the Gertsenshtein coupling. We show the
results for both the damping and the non-damping case. (a): Simulated values for the couplings:
The Gertsenshtein effect starts to dominate already at ∼ 1MHz. (b): Optimistic coupling (for
ωl = 5 kHz): The signal is about six orders of magnitude stronger at higher frequencies and the
Gertsenshtein effect, dominates above ∼ 100MHz. Note that the influence of the damping on
the Gertsenshtein effect is considerably stronger for the optimistic values.
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(b) Optimistic case
|Cl

01| = 1, |Γ+| = |Γ×| = 0.5.

Figure 6.7.: Signal power for the combined couplings. We show the results for a scanning and
broadband (ωl = 5.24 kHz) experiment and distinguish between the damping and non-damping
case. (a): Simulated values for the couplings: One remarkable result is that the damping can
enhance the signal in the broadband case. (b): Optimistic coupling (for ωL = 5 kHz). The signal
is considerably stronger, in particular for the broadband measurement.
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case, it starts to dominate much later at ∼ 100MHz. This explains, why the results of [4],
where optimistic values based on ideal spherical cavities are chosen, are different. It should be
noted that the long wavelength approximation breaks down at ∼ 1GHz (see chapter 4.4), so
the predicted Gertsenshtein signal may not be sufficiently accurate at higher frequencies. We
postpone a detailed analysis to future work.
The combined signal is shown in figure 6.7, both for a scanning and a broadband (ωl = 5.24 kHz)
experiment. A remarkable feature is that in the broadband case, the damping can lead to a
higher signal. This can happen because ωl is held fixed in the resonance function Λ1(ω) and the
damping term γ1γl comes with a minus sign, so it reduces the value in the denominator of 6.20.
For the optimistic coupling, the broadband approach is a little more sensitive than the scanning
approach at low frequencies. However, this is due to the fact that we overcouple and therefore
have a larger accessible bandwidth at the readout, which also enhances some noise sources (see
chapter 7 for further details).
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7. Noise Sources

An important property of the heterodyne setup is the response to various noise sources. An
investigation of the most important sources has already been done by the MAGO collaboration
[2] and in [4]. Our treatment, however, is much more detailed. We start with a discussion of
mechanical noise, which is supposed to be the strongest source since it couples to the same
mechanical eigenfrequencies as the GW. Furthermore, two different kinds of thermal noise will
be described as well as amplifier and oscillator phase noise. We will conclude with a discussion
of other noise sources that are much less dominant and therefore negligible. This chapter greatly
benefits from previous studies such as [3, 5, 43].
To compare our results with these studies, all noise sources are plotted with and without the
damping term. In the non-damping case, we set γ1γl = 0 in the resonance functions, such that
the results are comparable with [4].
It is further argued in [4], that overcoupling is preferred in a broadband (i.e. broadband) search
and we therefore assume Qcpl = 105, Qint = 1010, while Qcpl = Qint = 1010 in the scanning case.
However, we have to be careful at lower frequency differences where the bandwidth of the signal
mode might overlap with the pump mode. To avoid this, we adjust the coupling quality factor
for each frequency step such that

Qcpl(ωg) = max

(
105,

2ω0

ωg

)
.

This can lead to chaotic seeming curves for the broadband sensitivity in the lower frequency
regime (≲ 10 kHz).

7.1. Mechanical Noise

Besides a passing GW, there are also several other mechanisms that can lead to an excitation
of the mechanical cavity modes. The most dominant one is expected to come from external
vibrations of the cryogenic cooling system [3], although attempts to isolate the cavity from this
system were already made by the MAGO collaboration. So in the future, this influence could
possibly be reduced such that it is lower than the unavoidable thermal noise. However, there
are also seismic noise and thermal excitations that cannot be avoided completely. The latter is
discussed in chapter 7.2 in more detail.
We can easily model the mechanical noise as an additional force density with a flat spectrum
that couples to the mechanical modes via eqn. 6.11. The resulting PSD directly follows from
eqn. 6.15 and reads

Smech(ω) =
ω1

Qcpl
U0V

−2/3
cav

|C l
01|2

M2

ω4
1Sfl(ω − ω0)

|Λ1(ω − (ω0 + ωg))|2
. (7.1)

Note that we have to use fl(ω) = Fl(ω− ωg) and ql(t) = Ql(ω− ωg), since the mechanical noise
has no specific frequency ωg. For the function Sfl(ω), we assume the same model as in [4, 43].
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Figure 7.1.: This is a plot of the total mechanical noise power. It is obtained by integrating eqn.
7.5 over the bandwidth of the signal mode. In the scanning case, we assume critical coupling by
setting Qcpl = 1010, whereas we overcouple in the broadband case. The damping is assumed to
be influenced by the lowest lying mode (ωl = 50Hz) only. To compare this plot to figure 3 from
[4], note that we considering the additional sub-kHz modes of MAGO here which significantly
change the shape of the curve. However, the orders of magnitude agree.

According to a measurement from light-shining-through-wall experiments at FNAL [67, 68], it
is possible to reduce the wall displacement of loaded cavities to qrms ∼ 0.1 nm, where qrms is the
root mean square of q(t). Setting A1(ω) = 0, we can derive the PSD

Sql(ω) =
1

M2

Sfl(ω)

(ω2
l − ω2)2 + (ωωl/Ql)2

from eqn. 6.11. For the Breit-Wigner shape, it is reasonable to impose the narrow-bandwidth
approximation since Sfl(ω) is spatially flat. From standard functional analysis, we know that

(ωωl/Ql)
2

(ω2
l − ω2) + (ωωl/Ql)2

−→ π
ωl

Ql
δ
(
ω −

ω2
l

ω

)
=
πωl

2Ql

(
δ(ω − ωl) + δ(ω + ωl)

)
(7.2)

so the time averaged displacement of mode l becomes

⟨q2l ⟩ =
1

(2π)2

∫
dωSql(ω) =

1

4πM2

Ql

ω3
l

Sfl(ωl), (7.3)

where we assumed Sfl(ωl) = Sfl(−ωl). The squared wall displacement scales with ⟨q2l ⟩ ∼ 1/ω3
l ,

which means that the largest contribution comes from the lowest lying frequency. In [3], it is
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therefore argued that qrms =
√

⟨q2min(t)⟩ where qmin(t) is the displacement of the lowest lying

mode with frequency ωmin. We deduce that Sfl(ωmin) becomes

Sfl(ωmin) = 4πM2ω3
min

q2rms

Ql
. (7.4)

Currently there are no available vibrational measurements for SRF cavities with cryogenic cool-
ing systems for higher modes. In [4], it was argued that most mechanical noise sources decrease
at least with Sfl(ω) ∼ 1/ω, so we assume Sfl(ω) = Sfl(ωmin)× ωmin/ω. Plugging this into eqn.
7.1, we end up with

Smech(ω) =
ω1

Qcpl
U0V

−2/3
cav |C l

01|2
q2rms

Ql

4πω3
minω

4
1

|Λ1(ω − (ω0 + ωg))|2
ωmin

ω − ω0
, ω − ω0 > ωmin. (7.5)

Note that although the frequency ωg appears in the resonance function, the noise is independent
of the GW frequency. This can be found by explicitly calculating Λ1(ω−(ω0+ωg)), which yields

Λ1(ω − (ω0 + ωg)) =
(
ω2
1 − ω2 + iω

ω1

Q1

)(
ω2
l − (ω − ω0)

2 + i(ω − ω0)
ωl

Ql

)
− U0V

−2/3
cav ω2

1

(C l
01)

2

M
.

Without the back-action term, this function agrees with the resonance structure of eqn. 17 in
[4]. The integrated power of the thermal noise is shown in figure 7.1.

7.2. Thermal Noise

Thermal noise appears in two different channels: thermal vibration of the mechanical modes and
thermal occupation of the electromagnetic modes. The former can be treated as an additional
irreducible contribution to the mechanical noise. We follow [4] to derive the corresponding PSD.
From 5.3, we can read off the Hamiltonian

H =
1

2
Mq̇2l +

1

2
Mω2

l q
2
l (t)

of one mechanical mode. It can be connected to the wall temperature via the equipartition
theorem [4, 69]. We get 〈

ql
∂H

∂ql

〉
=Mω2

l ⟨q2l (t)⟩ = kBT,

where kB is the Boltzmann constant. Using 7.3, we can derive the thermal PSD

Sfth(ωl) = 4πM
ωl

Ql
kBT.

It can be inserted into eqn. 7.1 in order to arrive at

S
(mech)
th (ω) =

ω1

Qcpl
U0V

−2/3
cav ω4

1

|C l
01|2

M

ωl

Ql

4πkBT

|Λ1(ω − (ω0 + ωg))|2
. (7.6)

Unlike Smech(ω) in eqn. 7.5, the thermal noise can be reduced by increasing the cavity mass M .
On the other hand, the thermal occupation of the electromagnetic modes can be modeled as an
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Figure 7.2.: These plots show the total power of the thermal noise. On the left, the mechanical
contribution is calculated by integrating eqn. 7.6 over the bandwidth of the signal mode. On the
right, the electromagnetic contribution is shown by integrating over eqn. 7.8. In the scanning
case, we assume critical coupling by setting Qcpl = 1010, whereas we overcouple in the broadband
case. The damping of the thermal noise is assumed to be influenced by the lowest lying mode
(ωl = 50Hz) only.

additional external oscillator. We already know the PSD of such an oscillator from eqn. 6.21
and we can easily adapt it for the thermal noise such that

Sth(ω) =
Q1

Qcpl

ω3
1

Q3
1

ω2UthSbth(ω)

|Λ2(ω − (ω0 + ωg))|2
. (7.7)

The PSD Sth(ω) of the thermal occupation can be derived similarly to Sfl(ωmin) (eqn. 7.4). The
idea is to attach a temperature T via the equipartition theorem to an unperturbed signal mode.
That means, we consider eqn. 5.14 without the influence of a GW but with a thermal driving
field, i.e.

b̈1 +
ω1

Qint
ḃ1 + ω2

1b1 =
ω1

Qint

√
Uth

U1
ḃth

Fourier transformation and expressing the solution in terms of a PSD (using eqn. 6.19) yields

U1Sb1(ω) =
1

2

(ωω1/Qint)
2

(ω2 − ω2
1)

2 + (ωω1/Qint)2
UthSbth(ω).

The thermal spectrum is supposed to be flat compared to the Breit-Wigner resonance. By
applying the narrow-bandwith approximation given in eqn. 7.2 again, we can calculate ⟨b21(t)⟩
following the same arguments. The result can then be inserted into the equipartition theorem,
using the Hamiltonion H = U1(e

2
1(t) + b21(t)) (compare with eqn. 5.5 or [5]). We find〈

b1
∂H

∂b1

〉
= 2U1⟨b21⟩ =

1

4π

ω1

Qint
UthSbth(ω) = kBT.

Together with eqn. 7.7, we finally obtain

Sth(ω) =
Qint

Qcpl

ω2
1

Q2
1

4πkBTω
2

|Λ2(ω − (ω0 + ωg))|2
. (7.8)

65



7. Noise Sources

Note that the PSD agrees with the results from [3, 4] if we neglect the back-action (i.e. γ1γl = 0).
The integrated power of both types of thermal noise is shown in figure 7.2. An alternative way
to derive the thermal noise PSD is described in appendix C.

7.3. Amplifier Noise

The amplifier noise is an irreducible noise source that arises at the readout of the system. Two
main contributions are quantum zero-point fluctuations as well as back-action and imprecision
noise associated with the amplifier [3]. As in [3, 4, 70], we assume that the noise can be reduced
to its quantum limit, so we only have to consider the PSD

Samp(ω) = 4πℏω.

This has been achieved for instance at GHz frequencies in [71]. Note that the spectral shape is
only valid within the readout bandwidth. So the total power arising from the amplifier noise is
the integral over the FWHM of the readout, i.e.

Pamp =

∫ ωcpl+ωcpl/Qcpl

ωcpl−ωcpl/Qcpl

dω 4πℏω = 8πℏωcpl
ωcpl

Qcpl
. (7.9)
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Figure 7.3.: This plot shows the total power of the amplifier noise that is calculated in eqn. 7.9.
In the scanning case, we assume critical coupling by setting Qcpl = 1010 whereas we overcouple in
the broadband case. Note that Qcpl = 1010 is adjusted in case of overcoupling such that the pump
and signal mode do not overlap. Therefore, the amplifer noise increases for the first ∼ 10 kHz.
Since the noise appears in the readout system, it is the same for the damping and non-damping
case.
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The power Pamp is shown in figure 7.3. In the broadband case, amplifier noise is the largest
contribution to the total noise for high frequencies.

7.4. Oscillator Phase Noise

We have already discussed in detail the coupling of an external oscillator to the pump mode that
has a small leakage to the signal mode in chapter 6. For a monochromatic oscillator, this leakage
can be easily distinguished from the signal as there is no overlap in frequency space. However,
the oscillator PSD might have a broad spectrum in general, which leads to a significant noise in
the signal bandwidth.
We again follow the ansatz from [3, 43] and consider an oscillator with an additional phase φ(t)
such that

bd(t) = eiω0t+iφ(t) ≈ eiω0t + iφ(t)eiω0t,

where we assumed φ(t) ≪ 1 in the last step. This function gives rise to the PSD

Sbd(ω) = 4π2δ(ω − ω0) + Sφ(ω − ω0).

The first term is again the monochromatic part of the input signal and can be neglected. We
keep the second term which describes the power leakage to frequencies other than ω0. Using
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Figure 7.4.: This plot shows the signal power of oscillator noise. It is obtained by integrating
eqn. 7.10 over the bandwidth of the signal mode. In the scanning case, we assume critical
coupling by setting Qcpl = 1010 whereas we overcouple in the broadband case. The damping is
assumed to be influenced by the lowes lying mode (ωl = 50Hz) only. Note that the scanning,
non-damping case agrees with the results from [3].
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eqn. 6.21, we obtain

Sph(ω) = ϵ2
Q1

Qcpl

ω3
1

Q3
1

Udω
2 Sφ(ω − ω0)

|Λ2(ω − (ω0 + ωg))|2
. (7.10)

The phase PSD can be approximated by a function of the form [3, 72]

Sφ(ω) =
1

1015Hz
+

1

1011
1

ω
+

10−10Hz

ω2
+

10−8Hz2

ω3
.

It is a superposition of four distinguishable effects. The first term corresponds to white noise,
while the 1/ω component is due to flicker-noise1. Finally, the 1/ω2 and 1/ω3 contributions can
be attached to the Leeson effect. It dominates for small frequency splittings between the pump
and signal mode [3, 73, 74].
The strength of the oscillator phase noise can be controlled by the mode coupling ϵ. It was
experimentally shown in [2, 40] for MAGO-like geometries, that couplings of ϵ ∼ O(10−7) can
be achieved such that the PSD is suppressed by a factor of O(10−14). We will adopt this value
for the rest of this thesis. The total power of the oscillator phase noise in the signal mode is
shown in figure 7.4.

7.5. Other Noise Sources

In this chapter, we want to give a short discussion of other possible noise sources. For the
MAGO-like design, they are suppressed compared to the noise discussed in the previous chapters.
However, there could be alternative cavity designs where they play a role.
The first effect we consider here is called Field Emission. It arises from free electrons inside
the cavity that are accelerated by high electric surface fields [3]. These electrons can come from
imperfections in the cavity wall, which mostly appear at sharp edges or corners. Along their
way through the cavity, the electrons emit energy in three different ways: Synchrotron radiation
while they are accelerated, transition radiation when they hit the cavity wall and bremsstrahlung
when they are decelerated inside the wall. A further discussion is given in [3], where it is argued
that the Field Emission PSD at the signal mode ω1 can be parametrized as

Sfe(ω1)

4πkBT
≈ Ptot

0.1W
×


1 synchrotron radiation
10−6 transition radiation
10−5 bremsstrahlung.

Here, Ptot is the total energy and Sfe(ω1) is compared to the thermal noise at temperature T . For
Ptot ≲ 0.1W, the noise from field emission is negligible. We note that modern cavity fabrication
techniques can significantly reduce the total energy such that Ptot < 10W up to surface fields
of ∼ 60MV/m [3]. In many cases, field emission is not even detectable at these field strengths
[3, 75]. The shell of the MAGO cavity has a smooth geometry, even in the coupling system, so
the noise is also negligible. However, if we should use retractable fins with sharp edges in order
to tune the frequency difference between the pump and signal mode in the future, field emission
could become relevant.
The next effect we want to discuss is a Cavity Frequency Drift. It occurs due to low frequency
deformations from seismic noise or fluctuations of the wall temperature and largely depends on

1Sometimes also called 1/f noise or pink noise
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the technical details of the cavity2 [43]. The initial eigenmodes change such that the coupling
and readout systems are not perfectly matched to the pump and signal mode. In [43], it was
argued that the shift can be monitored with active feedback mechanisms and controlled with
large precision in order to separate it from the signal. Hence, it is negligible compared to the
other mechanical noise sources.
In [3], it is mentioned that nonlinearities in the response of the cavity walls to the pump mode
fields could lead to radiation with frequencies corresponding to integer multiples of ω0. This is,
however, no problem for the heterodyne setup, as ω1 − ω0 ≪ ω0 and we can therefore separate
the noise from the signal mode.
There are a bunch of other effects that could be described here, for example multipacting and
thermal breakdown [3, 76, 77]. However, they are well known today and can be controlled
without having a considerable impact on the measurements. We therefore conclude that we
only need to consider the noise sources mentioned in chapter 7.1-7.4.

7.6. The Total Noise

We can now combine all discussed noise sources to a total noise PSD given by

Stot(ω) = Smech(ω) + S
(mech)
th (ω) + Sth(ω) + Samp(ω) + Sph(ω)

and compute the sensitivity of the MAGO-like cavity. Before we do this in chapter 8, however,
we want to compare the contributions of the different noises. Figure 7.5 shows the power of all
noise sources for the broadband and scanning case respectively. It may be surprising that the
noise in the broadband measurement is overall stronger, which seems to be different from the
results in [4]. The reason is that we do not show the PSD but the total power in the signal

2For instance, it depends on the cavity’s hysteresis.

Hz

Hz

kHz

kHz

MHz

MHz

GHz

GHz

Frequency ωg/2π
10-50 10-50
10-46 10-46
10-42 10-42
10-38 10-38
10-34 10-34
10-30 10-30
10-26 10-26
10-22 10-22
10-18 10-18
10-14 10-14
10-10 10-10
10-6 10-6
10-2 10-2

No
ise

 P
ow

er
 in

 S
ig

na
l M

od
e 

[W
]

Broadband
Hz

Hz

kHz

kHz

MHz

MHz

GHz

GHz

Frequency ωg/2π
10-50 10-50
10-46 10-46
10-42 10-42
10-38 10-38
10-34 10-34
10-30 10-30
10-26 10-26
10-22 10-22
10-18 10-18
10-14 10-14
10-10 10-10
10-6 10-6
10-2 10-2

No
ise

 P
ow

er
 in

 S
ig

na
l M

od
e 

[W
]

Scan

Amplifier Noise
Oscillator Noise
Thermal Noise
Mechanical Noise
Thermal Mechanical Noise

Figure 7.5.: These plots show all contributions to the noise power. In the scanning case, we
assume critical coupling by setting Qcpl = 1010 whereas we overcouple in the broadband case. We
assume that the damping of the thermal and oscillator noise is only influenced by the lowest lying
mode (ωl = 50Hz). We see that mechanical noise is the biggest contribution at low frequencies
whereas thermal and amplifier noise dominate at high frequencies.

69
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mode, which depends on the coupling quality factor Qcpl. As we pointed out at the beginning
of this chapter, we overcouple in the broadband case (Qcpl ∼ 105), which results in a much
broader signal mode bandwidth. For ω1 ∼ 1GHz, the PSD has to be multiplied with a factor of
ω1/Qcpl(ω) ∼ 10 kHz to obtain the total power. For the scanning-case, where Qcpl ∼ 1010, the
factor yields ω1/Qcpl ∼ 0.1Hz.
Besides the differences in the order of magnitude, figure 7.5 clearly shows the effect of damping
for lower frequencies. The strongest effect can be seen for the thermal and oscillator phase
noise, which drop by twelve orders of magnitude to below 100 kHz compared to the non-damping
calculations (see also fig. 7.2 and fig. 7.4). The mechanical noise is influenced as well since the
Breit-Wigner peaks of the resonances are much weaker than for the non-damping case.
When we consider the major noise contribution dependent on the frequency, we obtain the same
result as in [4]. Both in the broadband and the scanning case, mechanical noise dominates
up to ∼ 10 kHz. For higher frequencies, amplifier noise dominates for the broadband setup
and thermal EM noise for the scanning setup. Oscillator phase noise is negligible over the full
parameter space since it is at least eight orders of magnitude below the leading contribution.
In future experiments, it may be possible that mechanical noise from the cryogenic system or
seismic vibrations could be reduced below the thermal limit, which is represented by the dashed
lines in figure 7.5. This would again significantly enhance the sensitivity at low frequencies. In
our further analysis, we will include the optimistic assumption of a fully reduced noise in order
to show the potential of future developments of the experiment.
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8. Sensitivity Estimates

In this chapter, we finally want to compare the noise and signal powers to estimate the sensitivity
of the MAGO cavity to GW signals. This has already been done in [4] for two ideal spheres
with arbitrary coupling. We calculate the sensitivity by setting the signal-to-noise ratio to one,
i.e.

SNR =
Psig

Pnoise

√
τ = 1,

where τ is the integration time. By factorizing out the strain h0 from the signal power, i.e.
Psig = h0 × P h

sig, we obtain

hmin =
Pnoise

P h
sig

1√
τ
.

We start with a discussion of the MAGO sensitivity in chapter 8.1 and subsequently compare
the results to [4] in chapter 8.2.

8.1. MAGO Sensitivity

Once the MAGO prototype will arrive in Hamburg, we will start with basic measurements at
room temperature (T ≈ 293K). The material properties of niobium (Young’s modulus, Poisson
ration etc.) are currently not available for the cooled cavity. Therefore, considering a damped
signal with simulated coupling coefficients at room temperature is the most realistic setup.
However, it is clear that the quality factors will significantly shrink such that there is no chance
to reach a physically interesting region. For that reason, we will, as in previous chapters, use
the room temperature properties of niobium, but assume T = 1.8K as well as superconducting
walls.
In figure 8.1, we show the results for a scanning and broadband (ωl = 5.24 kHz) experiment.
Additionally, we include the sensitivity for the case that the mechanical noise can be reduced
to the thermal limit (see chapter 7.2). It can be seen that the broadband approach is not suffi-
ciently sensitive for GW detection. Even a scanning measurement can only reach strains beyond
h0 ∼ 10−20 in the MHz-regime. However, we note that this is just the sensitivity of a prototype
with small couplings to the GW. An optimization of the couplings could considerably enhance
the sensitivity in the future. The biggest advantage of an improved experimental setup would be
that it could operate, at least, across 6 orders of magnitude in frequency space.1 Furthermore,
it has a small size and low costs.
In figure 8.2, we show the single contributions from the mechanical coupling and the Gertsen-
shtein effect. For the optimistic couplings, it shows the same behaviour that we already know
from earlier results, namely that the latter is only dominant at very high frequencies in the
GHz regime. We point out that the long wavelength approach breaks down for these short

1We saw that the Gertsenshtein effect becomes dominant above ∼ 100MHz, so the frequency range can be much
larger. To further investigate this regime, the full metric of the proper detector frame must be taken into
account.
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Figure 8.1.: In this plot we show the sensitivity reach for the MAGO-like cavity at T = 1.8K
for different scenarios. First, we distinct between a scanning and broadband (non-scan, ωl =
5.24 kHz) experiment. Second, we also show the case where mechanical noise can be reduced to
the thermal limit (dashed lines). Note that the broadband approach is the most realistic case
for the MAGO cavity, as a scan over a large frequency region is not feasible with the design
(see chapter 2.3 and 2.5). It is, however, much less sensitive and does not reach the interesting
region for new physics (see chapter 9). If we were able to include a scanning mechanism, the
prospective reach would be about ∼ O(10−22) above 10MHz.

wavelengths and more detailed calculations are required. However, when we consider the re-
sults for the simulated couplings, we see that the Gertsenshtein effect is already important at
∼ O(1MHz), where our calculations are still valid.
Finally, we show the sensitivities for the case of a vanishing damping term in figure 8.3. The
mechanical contribution is slightly stronger, but the result is still comparable to the case where
the damping is included. We therefore conclude, that our improved calculations are important
to better estimate the signal, but they do not significantly change the signal reach of the detec-
tor.
In each plot, we again show the case where the mechanical signal can be reduced below the
thermal limit. We see that this would lead to some improvements at low frequencies, but it does
not have a considerable impact to the sensitivity. Note that we used modern results to estimate
the average shell displacement due to external vibrations (i.e. qrms = 0.1 nm). The original
MAGO cavity could be much more vulnerable to these sources, which would further reduce the
sensitivity.
Altogether, we see that the MAGO cavity is particularly suited to probe the frequency region
above ∼ 10 kHz, where GW could be only explained with new physics. In chapter 9, we will
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Figure 8.2.: These plots show the contributions from the mechanical coupling and the Gertsen-
shtein effect in case of a scanning setup. As we already showed in chapter 6.7, the Gertsenshtein
effect is much weaker at low frequencies, where the mechanical coupling dominates. At high fre-
quencies, however, the Gertsenshtein effect makes the largest contribution. (a): Calculation for
the simulated values: Here, the mechanical coupling dominates below ∼ 1MHz. (b): Optimistic
case where we assumed a very high coupling (at ωl = 5 kHz): The Gertsenshtein effect is much
less dominant here and is only important above ∼ 100MHz. However, we point out that we
applied the long wavelength approach, which becomes less valid in this regime.
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Figure 8.3.: In these plots we show the results without the damping term. (a): Sensitivity for
the simulated value: This plot can be directly compared with figure 8.1. It shows that the damping
term only has a small influence on the total sensitivity. (b): Sensitivity for the optimistic case
(high coupling at ωl = 5 kHz): This plot is comparable to figure 5 in [4]. The resonances of the
mechanical noise are not damped and therefore have an effect on the sensitivity. We point out
that the Gertsenshtein effect may be less dominant at high frequencies, since we imposed the long
wavelength approach.
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discuss some possible sources that may produce GWs at these frequencies. The possible strain
that can be reached is about ∼ O(10−19) for the simulated values and ∼ O(10−22) for the orig-
inal values. The Gertsenshtein effect may even allow for lower strains above 100MHz, but we
postpone a detailed evaluation to future work.

8.2. Comparison to Previous Results

In this chapter we want to compare our results to Berlin et al. [4], since the same type of
heterodyne cavity detectors is discussed in this paper. We already pointed out that [4] considers
perfect spherical cavities with an arbitrary coupling, neglecting its influence on the mechanical
properties. Furthermore, they did not consider the back-action effect which has, as we saw
in the previous chapter, some influence on the results. In figure 8.4, we show the sensitivity
estimates of [4]. They can be directly compared with our results in figure 8.5. We see that both
look similar to each other, yet they disagree on some important aspects. For instance, the gap
between the full mechanical and reduced mechanical noise is considerably smaller in our plot.
The reason for this difference is in the mechanical eigenfrequencies. In [4], they were calculated
for ideal spherical cavities with a total volume of Vcav = 30L (our cavity has Vcav ≈ 9.6L) and
the influence of the central coupling was neglected. With our setup, we found a lowest lying
mode of ∼ 0.05 kHz, which is much below the value of ∼ 10 kHz assumed in [4]. So, because
it is governed by the lowest lying mode, the mechanical noise is less dominant and close to the
thermal limit. We discussed the underlying theory in chapter 7.1.
Furthermore, the Gertsenshtein effect is suppressed over the full frequency range in fig. 8.4,

Figure 8.4.: This plot is taken from [4] and shows the sensitivity reach of heterodyne cavities for
scanning and broadband setups. The calculations were made for perfect spheres and an arbitrary
coupling which was neglected for the mechanical modes. The sensitivities can be compared with
figure 8.5, which shows the same plot with our results. Note that also the strain of possible
black hole superradiance sources is shown here, which we will study in chapter 9. Also the
frequency reach for some other GW experiments is shown. The label scanning (EM) refers to
the Gertsenshtein coupling.
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Figure 8.5.: This plot shows the same sensitivities as in figure 8.4, but now for the MAGO-like
cavity. We have chosen optimistic couplings, i.e. |C l

01| = 1, ωl = 5 kHz and |Γ+| = |Γ×| = 0.5.
Both plots show comparable sensitivity reaches, although we included the damping from the back-
action. However, there are some qualitative differences. The Gertsenshtein effect is much more
important in our plot and the difference between mechanical and reduced mechanical scanning
(i.e. only thermal vibrations included) is much less pronounced.

whereas we find that it might dominate above ∼ 100MHz even for optimistic couplings. It
should be noted that the calculations for the Gertsenshtein coupling are more sophisticated in
[4], because the full metric expansion of the proper detector frame is considered there. The
result is therefore more accurate in the upper MHz-regime.
For the broadband estimates, [4] made a detailed optimization of the overcoupling. We have
decided for a simpler approach by defining the bandwidth of the readout so that it does not
overlap with the pump mode as long as it cannot be fixed s Qcpl = 10−5 (more information can
be found in chapter 7).
Another feature of figure 8.4 is that is shows the sensitivity regions of other important GW
experiments such as LIGO/VIRGO, AURIGA (Weber bar experiment) and bulk-acoustic wave
(BAW) resonators. Although they have a better sensitivity in a small region, the heterodyne
approach is much more flexible and can probe several orders of magnitude in frequency space.
We will see that it is sufficient to probe interesting regions of new physics, for instance black
hole superradiance, in chapter 9.
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In this section, we want to give a short summary over possible sources of high frequency GW
that could be detectable with SCRF cavities. We will focus on monocromatic sources, since a
potential stochastic GW background is currently beyond the reach of the detector [4]. For more
information on such a background, see e.g. [59, 78, 79].
The first part will be dedicated to primordial black holes and the second part to the more
speculative idea of black hole superradiance. We then compare the expected strains with the
experimental sensitivity.

9.1. Primordial Black Hole Mergers

In extensions of the ΛCDM-model, primordial black holes (PBH) may have formed within the
first second after the big bang from the collapse of small scale density perturbations. A gen-
eral pedagogical introduction can be found in [80]. Their mass could in principle range from
∼ O(10−19)M⊙ to ∼ O(104)M⊙, setting them apart from common black holes which always
have more than several solar masses. A lower bound for the mass comes from Hawking radia-
tion, because very light PBHs would have been evaporated since they were formed 13.8 billion
years ago [81]. Also upper bounds could be made due to constraints on small scale perturbations
from the freeze-out value of the proton-neutron ratio at the time of big bang nucleosynthesis
[82]. However, higher masses are theoretically possible and were recently considered as potential
explanations for the accelerated structure formation observed by the James Webb Space Tele-
scope [83].
As they are hard to detect, PBHs could contribute a significant part of the dark matter content
in the universe. Detailed bounds can be found in figure 1 of [81]. One remarkable insight of
this plot is that in the mass range of 10−16 − 10−10M⊙, PBHs could even explain all the dark
matter. In this case, the mass of a PBH would be comparable to the mass of an asteroid with
a size of a few kilometer.
If PBHs are large enough, they could be in principle detected by microlensing events during the
transit of a background star. A recent analysis of data from the Optical Gravitational Lensing
Experiment (OGLE) found six ultrashort timescale events that could only be explained by some
earth mass objects [84]. As the origin of free floating planets is scarcely understood, it was
argued in [85] that those events could instead come from PBHs. From the obeserved rate, an
abundance of about ∼ 1% of dark matter could be derived. This strongly motivates further
searches for earth mass PBHs, for instance via GWs from merging events.
In order to detect PBH mergers, there must exist a mechanism for binary formation. There are
two possible explanations: First, binaries could have been formed in the early universe when
two PBHs were formed sufficiently close to each other [46, 86]. The other possibly mechanism
could be tidal capture in dense environments [87, 88, 89]. It was argued in [81], however, that
this late time production is subdominant for light PBHs.
The GW frequency originating from a PBH binary increases when the constituents approach.
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Figure 9.1.: This plot is taken from [81] and shows the diameter of a sphere around the earth,
where one merging event per year of a PBH binary with mass mPBH can be expected. The
merging rate also takes into account local density fluctuations from the milky way. Here, fPBH

denotes the relative abundance of PBHs relative to the case where they would describe the whole
dark matter content in the universe. We assume the pessimistic case of fPBH = 10−3.

A maximum is reached when the distance between them corresponds to the innermost stable
circular orbit (ISCO). The GW frequency fISCO is then given by [81, 11, 46]

fISCO =
4400Hz

(m1 +m2)/M⊙
.

We can also compute the characteristic GW strain during the inspiraling phase for an arbitrary
frequency fGW < fISCO. It is given by

h0 ≈
4

D

(
GM
c2

) 5
3
(
πfGW

c

) 2
3

,

where M is the chirp mass

M :=

(
(m1m2)

3

m1 +m2

) 1
5

and D the distance to the observer. For simplicity, we will assume m1 = m2 =: mPBH in the
following. We can then express h0 as

h0 ≈ 9.77 · 10−34 ×
(
fGW

1GHz

) 2
3
(

mPBH

10−12M⊙

) 5
3
(

D

1 kpc

)−1

. (9.1)

However, the GW signal from an inspiraling PBH is not constant. We can express the coalescence
time, i.e. the time until the fISCO is reached, as [11]

τ(f) = 83 sec×
(

mPBH

10−12M⊙

)− 5
3
(

f

GHz

)− 8
3

.
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From this formula, it is straightforward to compute the time ∆τ12 = τ(f1)−τ(f2) a binary emits
GW in a certain frequency band between f1 > f2. This is important, since the heterodyne cavity
has its highest sensitivity only for a small frequency band that corresponds to the difference
between the pump and signal mode. A passing gravitational wave needs some time to pump
the maximum energy into the signal mode, which is called the ringup time. It is defined as the
inverse width of the Breit-Wigner curve, i.e. τru := 1/Γ1 = 2πf1/Q1. So for a given distance D
and mass mPBH, the maximum frequency and therefore also the maximum strain (eqn. 9.1) is
constrained by

τ
(
f1 +

Γ1

2

)
− τ

(
f1 −

Γ1

2

)
> τru =

1

Γ1

To estimate the characteristic distance D(mPBH) of a merging event, we need the merging rate,
which is strongly dependent on the mass and abundance of the PBHs. More on that can be
found in [81], where also the plot given in figure 9.1 is explained in more detail.

9.2. Black Hole Superradiance

We start with a very general setup where some particle is reflected by a potential barrier.
Superradiance occurs when the amplitude of the outgoing state is higher then the amplitude
of the initial state. This can only happen in the framework of relativistic quantum mechanics,
for instance by applying the Klein-Gordon equation. In [90], it is argued that for a light scalar
particle with charge e and frequency ω that is scattered at a potential barrier with strength V ,
the reflection amplitude R is related to the initial and transmitted amplitudes I and T via

|R|2 = |I|2 − ω − eV

ω
|T |2.

In this case, the superradiance condition (i.e. the condition to have |R|2 > |I|2), is given by

0 < ω < eV.

The phenomenon can be understood in terms of quantum field theory. The high energy of the
barrier can induce the spontaneous creation of particle-antiparticle pairs, which scatter with
the incoming particle. Interestingly, this is not possible for fermionic particles, where a similar
calculation leads to [90]

|R|2 = |I|2 − |T |2.

This idea can be now applied to a spinning black hole with mass MBH and spin 0 < |a∗| < 1.
Scalar particles can have bound states with the black hole that are comparable to the bound
states in a hydrogen atom with quantum numbers n,l,m [91]. Therefore, the wavelength of the
particle must be sufficiently large (several kilometers), so the mechanism is only possible for
very light particles. The energy of a state with principal quantum number n is given by

ω = mp

(
1− (rgmp)

2

2n2ℏ2c2

)
where mp is the mass of the scalar particle and rg the Schwarzschildt radius rg := 2GM/c2.
Spinning black holes have an ergosphere, which is a region where the rotation of the black
hole drags spacetime around it, i.e. no static observer is allowed [90]. If a particle enters the
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Figure 9.2.: This plot is taken from [90] and shows the principle of superradiance. A light
boson cloud builds up via superradiant instability of a rotating black hole and subsequently emits
GW through annihilation and level transition. The emitted GW’s are typically very coherent and
could reach frequencies above 1MHz, if the black hole is sufficiently light, i.e. MBH ≪ 1M⊙. This
is only possible for PBH’s, so the mechanisms needs the existence of two speculative concepts.

ergoregion, a direct interaction between the mass and the spacetime is possible via the Penrose
process [92]. This interaction can be considered as a scattering at a barrier, with a superradiance
condition that yields [91]

ω

m
< ω+, (9.2)

where m is the magnetic quantum number and ω+ is defined by

ω+ :=
1

2

(
a∗

1 +
√
1− a2∗

)
1

rg
.

The additional energy of the particle is taken from the black hole mass and angular momentum.
When we now consider the scalar field in a bound state, it is constantly scattered in the ergoregion
and thus reduces the angular momentum of the black hole. The energy is carried by the particles
such that the occupation number of the bound state increases. This process is called superradiant
instability, which continues until the superradiance condition (eqn. 9.2) is no longer satisfied.
The maximum occupation number Nmax only depends on the mass MBH and the difference ∆a∗
between the initial and final spin. It is given by [91]

Nmax ≈ 1076 ×
(
∆a∗
0.1

)(
MBH

10M⊙

)2

.

Note that the superradiant instability only requires a single spontaneous pair production in the
vicinity of the black hole. It would therefore occur for each black hole with sufficiently large
spin, if an appropriate light scalar field exists.
Such as a hydrogen atom can radiate photons, a bosonic cloud around a black hole emits GWs.
This radiation can occur through three different channels: Level transition, annihilation of
scalar particles or a collapse of the whole cloud due to the self interaction of the particles. The

79



9. Possible Sources

latter appears when the energy transfer in the ergoregion becomes comparable to the binding
energy of the field and is called bosenova. It leads to a short GW signals and the superradiant
growth restarts [91]. We will focus here on the annihilation process, where the GW frequency is
ωg ≈ 2mp. Signals from these processes are typically very coherent. A sketch of the full principle
of GW production through black hole superradiance is given in figure 9.2.
The typical strain size for a black hole at distance D is given by [4, 93]

h0 ≈ 10−23 ×
(
∆a∗
0.1

)(
1 kpc

D

)(
MBH

1M⊙

)(
α

0.2

)7

,

where the parameter α is defined through

α :=
GMBHmp

ℏc3
≈ 0.2×

(
MBH

1M⊙

)(
mp

3× 10−11 eV

)
. (9.3)

We follow [4] and choose D ≳ 1 kpc as well as α = 0.2, such that MBH(mp) = MBH(ωg).
According to [93], the superradiance condition can be rewritten as

α ≤ m

2

(
a∗

1 +
√
1− a2∗

)
such that the minimum spin, where the superradiance disappears, becomes

amin
∗ =

4mα

m2 + 4α2
.

By choosing amax
∗ = 0.9, we can then compute ∆a∗ for l = m = 1. The strain then simply

follows from

h0 ≲ 10−23 ×
(

ωp

91.1 kHz

)−1(∆a∗
0.1

)
. (9.4)

Note that for high frequencies ωg ≫ 1MHz, the black hole mass must be MBH ≪ 1M⊙. This is
only possible for PBHs, so the superradiant emission of high frequency GW needs the existence
of two speculative concepts. However, heterodyne cavity experiments would be particularly
sensitive to these signals. To see this, consider the drift rate of the frequency, which can be
calculated by [94]

ω̇g ≈ 7× 10−15Hz

s
×
(
α

0.1

)17( ωg

1 kHz

)
.

For α = 0.1, ω0 = 1GHz and Q1 = 105, that means that the GW signal remains within the
cavity bandwidth for t ≈ 105a× (MHz/ωg)

2 and is therefore very coherent [4] .

9.3. Comparison with Sensitivities

We can now compare the predicted sensitivities for PBHs and black hole superradiance with the
sensitivity of MAGO. The result is shown in figure 9.3. We included the scanning sensitivity for
the original as well as the optimistic couplings (i.e. |C l

01| = 1, ωl = 5kHz and |Γ+| = |Γ×| = 0.5).
The PBH distances are taken from figure 9.1 and can be considered as upper bounds. A real
signal may therefore be slightly stronger. Although the strains should be in principle measurable
for some masses, the signal is to short to reach the ring-up time. Hence, MAGO is not able to
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Figure 9.3.: This plot shows the ability of MAGO to detect GW sources from new physics. Both
the original sensitivity as well as the sensitivity for optimistic couplings (|C l

01| = 1, ωl = 5 kHz
and |Γ+| = |Γ×| = 0.5) are included. We show two possible types of sources. The first are PBH
mergers with six different masses from 10−4M⊙ to 10−14M⊙. The solid line shows the frequency
and strain for a PBH merger with sufficiently large coherence time such that MAGO could in
principle measure the signal. On the other hand, the strain rapidly grows before the merging
event and would reach the detector sensitivity. However, the signal is too short to be resonantly
amplified. The dashed line therefore shows the PBH strain when the frequency changes faster
than the cavity ring-up time. When fPBH = fISCO, the PBH merger has reached the ringdown
and the signal suddenly stops. A better source would be superradiance, since it produces coherent
and strong signals. The plot shows that the MAGO sensitivity (with optimistic couplings) only
has to be improved by one order of magnitude to reach the interesting region.

detect PBHs and they cannot be considered as promising candidates for the detector.
Superradiance, however, would produce very coherent strains with a sufficient strength that can
be in principle detected. MAGO currently does not have enough sensitivity, but it only has to
be optimized by one order of magnitude to reach the interesting region. We therefore conclude
that MAGO has the ability to probe new physics and will be in particular able to confirm
superradiance or exclude an important part of the parameter space.
In any case, if MAGO detects a signal, it would definitely come from a source that is not
predicted by the standard model of particle physics and cosmology.
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10. Conclusion

In this thesis, we investigated in detail how GWs interact with the electromagnetic field of a
heterodyne cavity detector. We started with a detailed theoretical analysis of the interaction,
where we focused on the special case of monochromatic GWs propagating in z-direction. The
calculations were conducted in the proper detector frame, which is particularly important for
the Gertsenshtein coupling, because it is not gauge invariant. We further used a particular type
of cavity perturbation theory, which allowed us derive the mechanical couplings. The result was
a formula for the supplied signal power in the signal mode induced by a GW, which reads

Psig =
ω1

Qcpl
ω4
gU0

∣∣∣∣∣12 V
1/3
cav γ1(h+Γ+ + h×Γ×)

β1βl − γ1γl
− βlH(κ1η

E
01 + λ1η

B
01)

β1βl − γ1γl

∣∣∣∣∣
2

.

This formula contains both the Gertsenshtein effect (coupling constants: ηE01, η
B
01) as well as the

mechanical coupling (coupling constants: C l
01, Γ+, Γ×), and shows that they can interfere both

constructive and destructive. The parameters are given by

κ1 = i
ω1

8c2
(ω0 + ωg)

λ1 =
ω2
1

8c2

β1 = ω2
1 − (ω0 + ωg)

2 + i
ω1

Q1
(ω0 + ωg)

βl = ω2
l − ω2

g + iωg
ωl

Ql

γ1 = V −1/3
cav ω2

1C
l
01

γl =
1

M
V −1/3
cav U0C

l
01.

Unlike in Berlin et al. [4], we found a damping term γ1γl that significantly flattens the Breit-
Wigner curve of the resonance, because it contains a factor ω2

1 ∼ O(1018Hz). We point out that
this term is not new and was already considered by the MAGO collaboration [2, 5].
Although the damping reduces the total signal at frequencies below ∼ O(1MHz), it does the
same for the noise sources. Therefore, it does not dominantly effect the detector sensitivity
and the conclusions of Berlin et al. [4] can be reproduced. Only some small scale effects like
mechanical resonances are flattened due to the damping.
In addition to the theoretical analysis, we also applied our formalism to the original MAGO
design. For simplicity, we used the material parameter for niobium at room temperature,1 but
assumed that the cavity is operated in a superconducting state which allowed to use the expected
high quality factors. For the thermal noise, we have chosen a temperature of T = 1.8K.
We provided a detailed investigation of the interaction by calculating over 800 coefficients for

1Since for a temperature of 2K, not all values of the required parameters are known (see table 2.1).

82
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the GW-mechanical and mechanical-EM coupling. They behave as expected, i.e. the GW-
mechanical coupling decreases for higher resonances whereas the mechanical-EM coupling re-
mains approximately at the same strength2. Furthermore, we could show that the mechanical
modes that correspond to spherical eigenmodes start at ∼ 4 kHz. At lower frequencies, we found
a bunch of resonances that are related to the fully coupled system.
With these parameters, we were able to calculate the sensitivity. We considered both a scanning
search and a broadband search, for which the frequency difference between the pump and signal
mode is fixed. The latter is much less sensitive, but easier to realise since no tuning mechanism
is needed.
In Berlin et al. [4], the lowest lying mode was assumed to be at ∼ 10 kHz. However, we found
that the lowest lying mode of the real cavity can be found at ∼ 0.05 kHz, which resulted in a
much weaker mechanical noise. For this noise, we made the same assumptions as in [3, 4]. Since
the couplings turned out to be weaker than expected, we repeated the signal and sensitivity
calculations with optimistic values |C l

01| = 1, ωl = 5kHz and |Γ+| = |Γ×| = 0.5.
Furthermore, we compared the results with expected strains from exotic objects beyond the
standard model of particle physics and cosmology. In particular, we considered PBHs and black
hole superradiance. It turned out that the latter might be within the reach of future optimized
MAGO detectors, implying that they indeed potentially enable finding new physics. We did not
consider a stochastic GW background, but MAGO detectors may also enable its detection in
the future.
Once the MAGO cavity has arrived in Hamburg in Spring 2023, the first step will be to get fa-
miliar with the detector and to characterize the main parameters. This includes the mechanical
and electromagnetic spectrum as well as the tunability and tuning mechanism. We did some
preparations by simulating the spectrum of the MAGO cavity for a hammer blow at a fixed
position and by considering the difference ∆ω = ω1 − ω0 between the pump and signal mode
for slightly modified geometries. The results of these simulations can be compared to the real
cavity in order to improve the model and subsequent simulations. An outlook and further ideas
for future research on this experiment are laid out in chapter 11.

2Neglecting the two outliers at ωl = 5.147 kHz and ωl = 5.958 kHz
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In this thesis, we provided a solid theoretical background for heterodyne GW experiments that
we intend to become the foundation of future research. While working on this thesis, many in-
teresting questions arose, which could become topics of future bachelor, master or even doctoral
theses. Future students will benefit from a quickly growing research group at DESY/UHH and
an improved knowledge of the MAGO prototype. In the following, we want to consider some
possible open tasks for the theoretical part of the collaboration.
One of the most restrictive assumptions we adopt for this thesis was to consider only monochro-
matic GWs that propagate in z-direction. For future research, it is necessary to look at more
general GWs that propagate along an arbitrary axis. Also the assumption of a monocromatic
nature could be dropped and possible signals from a stochastic GW background could be inves-
tigated. Although it was argued in Berlin et al. [4] that such a background should be too weak
to be detected with the first generation of heterodyne experiments, this must not be the case
for future generations. The influence of the GW direction of propagation can be measured by
the coupling coefficients. Two of those, the GW-mechanical as well as the GW-electromagnetic
coupling, are sensitive to a change of direction. In Berlin et al. [4], such an analysis was already
carried out for the GW-mechanical coupling and two ideal spheres. It could be repeated and
applied to the MAGO design, and extended for GW couplings.
Furthermore, we have calculated the coupling constants for a static system configuration. In
the original system, it was possible to change the cavity geometry, i.e. to deform the boundary
conditions. Therefore, the coupling constants ηE01(γ), η

B
01(γ), Γ+(γ), Γ×(γ), C

l
01(γ) are functions

of an appropriate geometry parameter γ that describes the deformation of the initial configu-
ration. This could be, for instance, the thickness or radius of the central tuning cell. A future
analysis should include this dependence and investigate how the couplings change w.r.t. γ. The
same issues have to be considered for the mechanical vibrations that are also assumed to remain
unchanged so far.
At various points in this thesis, we mentioned that the simulation methods used might still
be very inefficient and at some points inaccurate. With COMSOL, CST and Python, three
different software and analysis tools were used to obtain the required results. To improve the
speed of the analysis, it might be preferable to use only one tool. For instance, the electro-
magnetic eigenmodes could be also simulated with COMSOL and without using CST, which
would avoid the cumbersome process of matching the coordinate grids. Furthermore, the reso-
lution was chosen such that the calculation time and data size could be handled appropriately
(Nx×Ny×Nz = 30×30×90 for MAGO). This caused some problems for higher order mechan-
ical modes, as the typical scale at which the displacement field changes became smaller than
the grid point distance. It was sufficient for this work as the primary focus was the theoretical
background. However, a future analysis will require an improvement of the simulation methods.
In chapter 2.5, we showed that a breaking of the symmetry of the cavity geometry leads to
much more flexibility concerning the scanning region. However, it is not clear if this is a feasible
approach since the coupling constants rapidly decrease. Another problem is that additional
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intermediate modes begin to appear between the symmetric and antisymmetric TE011 modes
when the frequency difference is too large. This could lead to an energy leakage into modes
with particularly high coupling to the pump mode. Therefore, an appropriate analysis of the
cross-talk and all relevant mode couplings is required to appropriately estimate the total signal
in the signal mode.
Also, alternative cavity geometries could be investigated, which should preserve the symmetry
but allow for a larger scanning region. They could make use of different tuning mechanisms like
retractable fins or movable parts inside the cavity1. However, the MAGO cavity is already the
outcome of an optimization process [2] and it also has to be noted that the quality factor highly
depends on the chosen geometry. So both the quality factor as well as the couplings have to be
optimized simultaneously. Furthermore, alternative tuning mechanisms may cause additional
noise sources. Retractable fins, for instance, add sharp features to the inner walls and could
lead to enhanced field emission (see chapter 7.5 and [3]). These arguments are the reason why
we only investigated variations of the original MAGO cavity. In future studies with focus on the
cavity geometry, there would be more time to take all effects into account and hence to look at
geometries different to the MAGO design.
One feature of the geometry that we ignored so far are the flanges that couple the oscillator
and the readout to the cavity. In a perfect cavity design, they should be negligible. In figure
2.3, however, we see that they are very thick compared to the cavity and it is expected that
they have a considerable influence on the mechanical modes. We therefore recommend to add
them to the 3D model in future analysis to improve match of experiment and simulation. In
particular, if the flange is located at an antinode of a mechanical excitation, it could change the
whole mode and lead to different solutions than shown in this thesis.
Finally, we point out that one cavity might not be able to cover the full frequency range from

1This approach was already chosen for instance in axion searches like ADMX [29].

Figure 11.1.: This picture is taken from [2] and shows the possible resolution of a network of
ten MAGO cavities. The two sources have an angular separation of ∆θ = ∆ϕ = 0.1. The whole
picture covers one square degree of the sky.
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1 kHz to 1GHz. Further, it would be not possible to locate the origin of the GW on the sky, as
we only measure the coupling strength which can in general not unambiguously be attached to
a certain direction. A solution would be to use multiple cavities, in best case at different places
on the earth to additionally filter unwanted noise sources. An intelligent configuration would
both allow for a localisation of the GW source and an enhanced sensitivity. We also point out
that a search focused on a potential stochastic GW background requires at least two cavities
that have to be cross-correlated [2]. Alternatively, one could use a MAGO cavity in conjunction
with other experiments like Weber bar detectors or interferometers.
Adding more MAGO cavities could enhance the resolution of the detector and therefore allow
for making pictures of the sky in the GW band. In [2], it is pointed out that this would also
enhance the sensitivity about N times, where N is the number of cavities. Figure 11.1 shows
a possible picture of two close GW sources on the sky taken by an array of N = 10 MAGO
cavities. If these sources have a separation of ∆θ = ∆ϕ ∼ 0.1◦, this configuration would already
be able to separate them. A further investigation of the possibilities offered by MAGO arrays is
urgently needed as the low costs of a single detector allow to use them in the foreseeable future.
We conclude that there are many opportunities for future research not only at the experimen-
tal level. However, it is important to point out that we need experimental data from the first
MAGO run in order to match the simulations with the real cavity. Since the measurements will
be conducted at room temperature, we will still be forced to extrapolate towards low temper-
atures (T ≈ 1.8K), which will, however, be sufficient to confirm the models. For instance, the
comparison allows for an investigation of whether the flanges have an important influence on
the mechanical modes or not. With the acquired experience, we can then start to address the
questions mentioned above. The cavity will arrive shortly after this thesis is finished, so this
project will directly continue.
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A. Basic Tools from Elasticity Theory

In this chapter, we want to review the basic tools from elasticity theory, that allow us to find
an equation of motion for a driven isotropic elastic solid. A more comprehensive treatment can
be found in standard textbooks such as [52] or [53].

A.1. The General Formalism

Consider a point x⃗ in an unstressed, continuous solid body. Applying a force F⃗ leads to a
deformation, which results in a translation of a mass at point x⃗ to a new position x⃗′ given by

x⃗ −→ x⃗′ = x⃗+ u⃗(x⃗),

where u⃗(x⃗) is called the displacement vector.
To describe a deformation, we must consider the change of the displacement vector from one
location to another. This change can be quantified by a second rank tensor defined as the
gradient of the displacement vector

Wij = ∂jui.

We can decompose this tensor into its irreducible parts, i.e.

Wij =
1

3
δijWkk +

1

2
(Wij +Wji)−

1

3
δijWkk +

1

2
(Wij −Wji)

=:
1

3
δijθ +Σij +Rij ,

where

θ :=Wkk = Tr(W ) (Expansion)

Σij :=
1

2
(Wij −Wji)−

1

3
δijWkk (Shear)

Rij :=
1

2
(Wij −Wji) (Rotation).

Each of these tensors describes a certain type of deformation. To understand why the trace θ,
for instance, describes an expansion, consider a small volume element V of a solid body. After a
deformation x⃗ −→ x⃗′ = x⃗+ u⃗(x⃗), the surface vector dS⃗ is displaced by the vector u⃗(x⃗). During
that process, it sweeps out a volume dS⃗ · u⃗ [53]. The full volume change can be obtained by
integrating over the surface ∂V of V , i.e.

δV =

∫
∂V

dS⃗ · u⃗ =

∫
V
dV∇u⃗ = ∇u⃗

∫
V
dV = ∇u⃗ · V = θV.

In the third equality, we used that V is considered as a small volume, so ∇u⃗ is approximately
constant. We observe that the trace of W describes the fractional change of the volume since

θ =
δV

V
.

88



A. Basic Tools from Elasticity Theory

In contrast, the shear tensor Σij is traceless and therefore describes a deformation without vol-
ume change. Clearly, due to the principle axis theorem, it is always possible to find a coordinate
system in which the shear tensor is diagonal. In this system, it describes a stretch or a squeeze
along each direction, but the net volume change sums up to zero. This is what is called shear.
Finally, we want to understand the rotation tensor. Therefore, consider a rotation

u⃗ = ω⃗ × x⃗ ⇔ ω⃗ =
1

2
∇× u⃗,

which can be rewritten as

ωi =
1

2
(∇× u⃗)i =

1

2
ϵijk

1

2
(∂juk − ∂kuj) = −1

2
ϵijkRjk.

Thus, the rotation is described by the antisymmetric part Rij .
In most cases, the rotation is not relevant in elasticity theory since it does not produce any
internal forces inside the solid body. Therefore, it is often neglected and only the so-called
strain tensor

Sij =Wij −Rij =
1

3
δijθ +Σij =

1

2
(Wij +Wji)

is considered. It has nothing to do with the GW strain hµν , although there are some conceptional
similarities.
Now that we have a tensor describing the displacement, we need a tensor describing its origin.
This so-called stress tensor can be constructed by considering two small regions in a solid body
which are in contact with each other. The first region exerts a force dF⃗ on the second one
through a contact surface with surface vector dS⃗. Doubling the area dS⃗ naturally doubles the
force. Thus, there must be a linear relationship between dS⃗ and dF⃗ . The transformation matrix
is given by the fully symmetric stress-tensor

dFi = TijdSj .

Here, we use the convention of [53], whereas [52] defines Tij with the opposite sign.
If the stress is determined by local conditions only, we can compute the total force by integrating

Fi = −
∫
∂V
TijdSj = −

∫
∂V
T⃗idS⃗ = −

∫
V
∇T⃗idV = −

∫
V
(∂jTij)dV =:

∫
V
fidV.

The force density can be therefore defined as

fi = −∂jTij . (A.1)

Since the stress tensor is symmetric, we can decompose it into a trace and a symmetric, traceless
part

Tij =
1

3
δijTkk +

1

2
(Tij + Tji)−

1

3
δijTkk =: δijP + T s

ij

with

P =
1

3
Tkk (Pressure)

T s
ij =

1

2
(Tij + Tji)−

1

3
δijTkk (Shear Stress).
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In elasticity theory, one assumes a linear relationship between the stress and the strain tensor
also on a non-infinitesimal level. Such a relation is governed by the fourth-rank elastic modulus
tensor

Tij = −YijklSkl.

Since Tij and Sij are symmetric, Yijkl inherits the following symmetries

Yijkl = Yjikl = Yijlk

Yijkl = Yklij .

For an isotropic medium, we assume that

P ∝ θ

T s
ij ∝ Σij .

In that case, the relation between Sij and Tij reduces to

Tij = δijP + T s
ij = −YijklSkl = −Kθδij − 2µΣij

with the bulk modulus K and the shear modulus (or second Lamé coefficient) µ. Both constants
are material dependent and fulfill K,µ > 0.
This relation can be brought into a more useful form, using Sij =

1
3δijθ + σij such that

Tij = −(K − 2

3
µ)θδij − 2µSij =: −λθδij − 2µSij (A.2)

with the first Lamé coefficient

λ = K − 2

3
µ.

We now have all the tools to calculate u⃗.

A.2. Elastodynamics

Now, we want to consider a time-dependent force inducing elastodynamic waves in the medium.
According to Newton’s second law, a non-vanishing force density results in a time-dependent
deformation

F⃗ =
∂p⃗

∂t
=
∂(mv⃗)

∂t
⇒ f⃗ =

∂(ρv⃗)

∂t
=

∂

∂t

(
ρ
∂u⃗

∂t

)
.

The force density can be calculated using eqn. A.1 together with eqn. A.2. We obtain

fi = −∂j(−λθδij − 2µSij) = (λ+ µ)∂i(∇u⃗) + µ∆ui.

Thus, the equation of motion becomes

∂

∂t

(
ρ
∂u⃗

∂t

)
= (λ+ µ)∇(∇u⃗) + µ∆u⃗.

Note that ρ is time-dependent as well! To derive a linear wave equation, we decompose

ρ = ρ(x⃗) + δρ(x⃗, t)

and assume:
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• δρ, u⃗ and ∂u⃗
∂t are small, we only need to expand up to first order in these quantities.

• ρ(x⃗) varies on much larger scales than u⃗ or ∂u⃗
∂t and can be therefore treated as constant.

These statements allow us to write

∂

∂t

(
ρ
∂u⃗

∂t

)
=

∂

∂t

(
ρ(x⃗)

∂u⃗

∂t
+ δρ(x⃗, t)

∂u⃗

∂t

)
= ρ(x⃗)

∂u⃗

∂t

which leads to the wave equation

ρ(x⃗)
∂u⃗

∂t
− (λ+ µ)∇(∇u⃗)− µ∆u⃗ = 0.

Note that ρ(x⃗) describes the density of the unperturbed solid only.
Finally, it is useful for us to assume that the elastodynamic wave is driven by an external force
density (i.e. the gravitational wave). If we denote this external force with f⃗ , the final version of
the equation of motion yields

ρ(x⃗)
∂u⃗

∂t
− (λ+ µ)∇(∇u⃗)− µ∆u⃗ = f⃗(x⃗, t).
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B. Further Calculations for Cavity Eigenmodes

In this chapter, we provide further calculations for the properties of general cavity eigenmodes.
We start with a proof of the statement, that it is possible to find a space of eigensolutions such
that E⃗n and B⃗n are either solenoidal or irrotational. After that, we show that it is not possible
to resonantly enhance the irrotational modes. It is therefore sufficient to consider solenoidal
modes only in a cavity experiment.

B.1. Solenoidal and Irrotational Modes

The goal of this chapter is to show that the eigensolutions E⃗n and B⃗n of the BVP

∆E⃗n(x⃗) + k2nE⃗n(x⃗) = 0

∆B⃗n(x⃗) + k2nB⃗n(x⃗) = 0

∇ · E⃗n|S = 0

n⃗ · B⃗n|S = 0

n⃗× E⃗n|S = 0

n⃗× (∇× B⃗n)|S = 0.

can be written in terms of solenoidal and irrotational modes only. They are defined through

∆E⃗s
n + kE,s

n E⃗s
n = 0

∆B⃗s
n + kB,s

n B⃗s
n = 0

∇ · E⃗s
n = 0

∇ · B⃗s
n = 0

}
solenoidal modes (B.1)

∆E⃗r
n + kE,r

n E⃗r
n = 0

∆B⃗r
n + kB,r

n B⃗s
n = 0

∇× E⃗r
n = 0

∇× B⃗r
n = 0

}
irrotational modes. (B.2)

We want to proof this statement for a cavity with a single connected and closed surface, follow-
ing again [48].
From the fundamental theorem of vector calculus1, we know that each continuous and differ-
entiable vector field in a closed region is uniquely determined by its vortices and sources inside
that region as well as its normal and tangential components on the shell. This means, we can
decompose the eigensolutions E⃗n and B⃗n of the Helmholtz equation as

E⃗n = E⃗s
n + E⃗r

n

B⃗n = B⃗s
n + B⃗r

n

∇ · E⃗s
n = 0

∇ · B⃗s
n = 0

∇× E⃗r
n = 0

∇× B⃗r
n = 0.

(B.3)

The remaining task now is to show that E⃗s
n,B⃗

s
n and E⃗r

n,B⃗
r
n are eigensolutions as well. Combining

the decomposition with eqn. B.1, we find

∇ · E⃗n = ∇ · E⃗r
n

∇× E⃗n = ∇× E⃗s
n

∇ · B⃗n = ∇ · B⃗r
n

∇× B⃗n = ∇× B⃗s
n

∇× E⃗r
n = 0

∇ · E⃗s
n = 0

∇× B⃗r
n = 0

∇ · B⃗s
n = 0

n⃗× E⃗r
n|S = 0

n⃗× E⃗s
n|S = 0

n⃗ · B⃗r
n|S = 0

n⃗ · B⃗s
n|S = 0.

(B.4)

1also known as Helmholtz theorem
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B. Further Calculations for Cavity Eigenmodes

Since E⃗n and B⃗n are eigensolutions of the Helmholtz equation, we can write

∆E⃗n + k2nE⃗n = ∆E⃗r
n + k2nE⃗

r
n +∆E⃗s

n + k2nE⃗
s
n = 0

and similarly for the B-field. For the solenoidal and irrotational modes, we therefore find

∆E⃗r
n + k2nE⃗

r
n = C⃗E ∆E⃗s

n + k2nE⃗
s
n = −C⃗E

∆B⃗r
n + k2nB⃗

r
n = C⃗B ∆B⃗s

n + k2nB⃗
s
n = −C⃗B

where C⃗E and C⃗B are some vector fields. We can use fundamental identities for the nabla
operator and the properties of solenoidal and irrotational modes (eqn. B.3) to write

∇ · (∇ · E⃗r
n) + k2nE⃗

r
n = C⃗E

−∇× (∇× B⃗s
n) + k2nB⃗

r
n = −C⃗B.

Evaluating these equations on the shell gives

k2nE⃗
r
n|S = C⃗E|S k2nB⃗

r
n|S = −C⃗B|S .

Using equation B.4, we can formulate two boundary value problems which fully determine C⃗E

and C⃗B. They have the form

∇ · C⃗E = 0 ∇× C⃗E = 0 n⃗× C⃗E|S = 0

∇ · C⃗B = 0 ∇× C⃗B = 0 n⃗ · C⃗B|S = 0.

According to the Helmholtz theorem, this uniquely determines C⃗E and C⃗B to vanish inside the
cavity, i.e. C⃗E = C⃗B = 0. This means that E⃗s

n,B⃗
s
n and E⃗r

n,B⃗
r
n are indeed eigensolutions to the

Helmholtz equation as well, so the proof is completed. Furthermore, we also see that

kE,r
n = kE,s

n = kB,r
n = kB,s

n =: kn.

So we see that an arbitrary field fulfilling the boundary conditions given in eqn. 3.6 can be
expanded in terms of solenoidal and irrotational modes.

B.2. Resonance Behaviour of Irrotational Modes

Consider the inhomogeneous Maxwell equations (eqn. 3.1 and 3.4). We assume that the current
J⃗ decomposes into an effective current J⃗eff driven by an external source and a term obeying
Ohms law, which reads

J⃗ = J⃗eff + σE⃗.

This is an appropriate choice for general cavity experiments, where the material dependent
conductivity σ is induced by power losses in the cavity walls and can be treated as a scalar here.
We follow [31] and make a rotation of Faraday’s law (eqn. 3.3) to obtain the wave equation

∇× (∇× E⃗) +
1

c2
∂2E⃗

∂t2
+ σ

∂E⃗

∂t
= −∂J⃗eff

∂t
. (B.5)
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B. Further Calculations for Cavity Eigenmodes

Since solenoidal and irrotational modes provide a complete basis, we can decompose E⃗ and use
that ∇× (∇× E⃗rn(x⃗)) = 0 as well as

∇× (∇× E⃗sn) = −∆E⃗sn(x⃗) +∇ · (∇ · E⃗rn)(x⃗) = −∆E⃗sn(x⃗) =
ωsn2

c2
E⃗sn(x⃗),

where we used the Helmholtz equation 3.9 in the last step. Inserting this into equation B.5
yields ∑

n

[ω2
sn

c2
esn(t)E⃗sn(x⃗) +

1

c2
∂2

∂t2
(
esn(t)E⃗sn(x⃗) + ern(t)E⃗rn(x⃗)

)
+
∂

∂t

(
σsnesn(t)E⃗sn(x⃗) + σrnern(t)E⃗rn(x⃗)

)]
= −∂J⃗eff

∂t
. (B.6)

Here, we assumed a different conductivities σsn and σrn for each mode. To investigate the
behaviour of solenoidal and irrotational modes, we use the orthogonality condition. Starting
with the solenoidal modes, we integrate over E⃗sm to get

ωsm

c2
esm(t)

∫
Vcav

d3xE⃗2
sm +

1

c2
∂2esm(t)

∂t2

∫
Vcav

d3xE⃗2
sm

+ σsm
∂esm(t)

∂t

∫
Vcav

d3xE⃗2
sm = −

∫
Vcav

d3xE⃗sm
∂J⃗eff
∂t

.

Assuming a monochromatic source, i.e. J⃗eff(x⃗, t) = J⃗eff(x⃗) cos(ωgt), this equation can be brought
into the form

1

c2
∂2esm(t)

∂t2
+ σ

∂esm(t)

∂t
+
ω2
sm

c2
esm(t) = αsmωg sin(ωgt),

where we have introduced the abbreviation

αi :=

∫
Vcav

d3xE⃗i(x⃗)J⃗eff(x⃗)∫
Vcav

d3xE⃗2
i (x⃗)

.

The inhomogeneous second-order differential equation can be solved with standard methods.
For esm(t), we find

esm(t) =
αsmc

4ωg

(ω4
g + ω4

sm)− 2ω2
smω

2
g + c4σ2smω

2
g

(
σωg sin(ωgt)−

ω2
sm − ω2

g

c2
cos(ωgt)

)
+ · · · ,

where we omitted further decaying terms dependent on the boundary conditions. It is imme-
diately clear that there is a resonance at ωsm = ωg, so it is possible to resonantly enhance

solenoidal modes. On the other hand, when we integrate equation B.6 over E⃗rm to analyze the
irrotational modes, we get

1

c2
∂2erm(t)

∂t2
+ σrm

∂erm(t)

∂t
= αrmωg sin(ωgt)

for a monochromatic source J⃗eff(x⃗, t) = J⃗eff(x⃗) cos(ωgt). The solution is given by

erm(t) = − αrmc
4

ω2
g + σ2c4

(ωg

c2
sin(ωgt) + σrm cos(ωgt)

)
+ · · · ,
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B. Further Calculations for Cavity Eigenmodes

where we again omitted decaying terms depending on the boundary conditions. There is clearly
no resonance appearing here, so we come to the conclusion that irrotational modes cannot be
resonantly enhanced [31]. Thus, we will neglect these modes when we calculate the cavity signal
of a certain gravitational wave event and only consider the solenoidal ones. The advantage is
that we can therefore always assume ∇ · E⃗n = 0.
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C. RLC Circuits and Thermal Noise

This chapter gives a short introduction to the correspondence between RLC circuits and cavities.
The results are then used to derive the thermal noise PSD Sbth(ω) that has been used in chapter
7.2. More details can be found in standard textbooks on electrodynamics such as [49, 95].

C.1. RLC Circuits and Cavities

Consider a typical parallel RLC circuit with resistance R, inductance L and conductivity C (see
fig. C.1). The circuit obeys Kirchhoff’s voltage law, i.e.

ud = uR + uC + uL = RI +
q

C
+ Lİ

with current I = q̇. We can perform the derivative on both sides and introduce the effective
voltage u := uR = RI to get

ü+
R

L
u̇+

1

LC
u =

R

L
u̇d. (C.1)

The solution for this differential equation in case of a damped oscillation (i.e. R2 < 4L/C) is
given by u(t) = u0e

αte−iωt with constants

α :=
R

2L
ω :=

√
1

LC
− R2

4L2
.

One can immediately see that ω =
√

1/(LC) in case of a free harmonic oscillator (R = 0). It is
further possible to introduce a quality factor Q := 1/R

√
L/C such that eqn. C.1 can be written

Figure C.1.: Sketch of a typical parallel RLC circuit with resistance R, inductance L and
conductivity C. The figure is taken from [96].
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as
ün +

ωn

Qn
u̇n + ω2

nun =
ωn

Qn
u̇d,

where we have introduced an index n referring to the different modes. This is the driven RLC
version of eqn. 3.23. If we compare the power signals of both the RLC circuit and the cavity
(eqn. 3.30), we get

Psig =
⟨u2n(t)⟩
Rn

=
1

(2π)2
ωn

Qn

1

Rn

∫
dωSun(ω) =

1

2π2
ωn

Qn
Un

∫
dωSbn(ω).

This formula gives us a correspondence between a RLC circuit and a cavity. We can compute
the signal PSD in one system and then translate the solution into the other system by applying

UnSbn(ω) =
Sun(ω)

Rn
. (C.2)

This is particularly helpful for the calculation of the thermal noise, which we will perform in the
following chapter.

C.2. The Thermal Noise PSD

We follow [43] and describe the thermal noise as an external oscillator that drives additional
energy into the signal mode. Thus, it can be modelled in the RLC picture as

ü+
R1

L1
u̇+

1

L1C1
u =

R1

L1
u̇th. (C.3)

It is convenient to perform a Fourier transformation of this equation and to write the solution
as

u(ω) =
[
iω
ω1

Q1
− (ω2 − ω2

1)
]−1

i
ωω1

Q1
uth(ω),

where we have written the coefficients again in terms of the mode-frequency ω1 and the quality
factorQ1. We can then make a narrow-width approximation, i.e. the Breit-Wigner resonance can
be treated as a delta-peak because ω1/Q1 ≪ 1. Applying standard techniques from functional
analysis gives

(ωω1/Q1)
2

(ωω1/Q1)2 + (ω2 − ω2
1)

2
−→ π

ω1

Q1
δ(ω − ω2

1/ω) =
πω1

2Q1

(
δ(ω − ω1) + δ(ω + ω1)

)
.

For the thermal noise, we will need the time average ⟨u2(t)⟩. With eqn. 3.25, we get

⟨u2(t)⟩ = 1

4π

ω1

2Q1

(
Suth

(ω1) + Suth
(ω1)

)
=

ω1

4πQ1
Suth

(ω),

since the spectrum of the thermal noise is assumed to be flat and therefore Suth
(−ω1) = Suth

(ω1).
The temperature T can be now connected to the average energy via the equipartition theorem
[43, 69]. We note that the full Hamiltonian of the system can be written as

H =
1

2
L1I

2 +
1

2
C1u

2.
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It is then straightforward to calculate

kBT =

〈
I1
∂H

∂I1

〉
= L1⟨I2(t)⟩ =

L1

R2
1

⟨u2(t)⟩ = 1

R1

Q1

ω1
⟨u2(t)⟩,

where kB is the Boltzmann constant. With equation C.2, it follows the final expression for the
thermal noise in the cavity. The result is

UthSbth(ω) =
Suth

(ω)

R1
= 4πkBT.
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D. Axions

In [3] and [43], it was argued that heterodyne cavity experiments can be used for Axion research
as well. So the question arises how strong such a signal would be in the MAGO cavity, although
it is not actively optimized for these signals.
We start with a short discussion of the theoretical background. Axions are light scalar particles
that were initially introduced to solve the strong CP-problem in quantum chromodynamics.
The problem arises due to an additional so-called θ-term in the Lagrangian, which violates the
invariance under CP-transformation. It reads

LQCD = ψ̄(iγµ∂µ −m)ψ − gsψ̄(γ
µT aGa

µ)ψ − 1

4
Ga

µνG
aµν + θ̄

g2s
32π2

Gµν
a G̃a

µν︸ ︷︷ ︸
θ-Term

.

Until today, no CP-violation was measured and the upper experimental bound is θ ≲ 10−10

[97]. From naturalness arguments, one would therefore expect that there must be a mechanism
suppressing the θ-term and preserving the CP-symmetry. In 1977, R. D. Peccei and H. Quinn
introduced a new global chiral U(1) symmetry, which is spontaneously broken at some (large)
energy scale fa [98]. It leads to a new scalar field a in the Lagrangian such that we get

LQCD = LSM − 1

2
∂µa∂

µa+ Lint

[
∂µ

fa

]
+

(
θ̄ + ξ

a

fa

)
g2s

32π2
Gµν

a G̃a
µν .

It turns out that the scalar field effectively cancels the θ-term. This approach is commonly
known as Peccei-Quinn mechanism. An improved mechanism was developed one year later by
S. Weinberg and F. Wilczek [99, 100]. They identified the scalar field with a new light pseudo
Nambu-Goldstone boson, which was dubbed Axion by F. Wilczek.
Apparently, the original Axion does only couple to quarks. However, there are two reasons why
it is reasonable to search for Axion-photon couplings. The first is that since the introduction of
the Peccei-Quinn mechanisms, many new light particles with similar properties were predicted
which are commonly called Axion-like particles. They are related, for instance, to String Theory,
where they are embedded in the so-called String Axiverse [101]. Some of these particles can in
principle couple to the photon.
But already the original Axion (sometimes called QCD Axion) can couple to the photon via
higher order loops (which is known as the Primakoff effect [102]). It leads to an effective
Lagrangian, which can be written as

LEM = −1

4
FµνF

µν − 1

2
∂µa∂

µa− gaγγ
4
aFµνF̃

µν . (D.1)

The coupling gaγγ is not constant and can be enhanced by applying strong electromagnetic fields.
In such a field, Axions can convert into photons and vice-versa, which is used by various Axion
experiments such as ALPS [103, 104], ADMX [29] and HAYSTACK [30]. But also heterodyne
cavity detectors such as MAGO should be in principle able to detect Axions. In the following,
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D. Axions

we will therefore calculate the corresponding PSD and compare it with the GW signal.
We start with the modified maxwell equations, which can be easily deduced from the Lagrangian
D.1 to be

∇E⃗ = ρeff

∇× B⃗ − ∂tE⃗ = j⃗eff,

where we introduced an effective charge density and current given by

ρeff = −gaγγB⃗ · ∇a

j⃗eff = −gaγγ(E⃗ ×∇a− B⃗
1

c
∂ta).

As in [3], we assume that the spatial gradients of the Axion field are small, i.e. ∇a = 0. We
already know how to find the PSD for this coupling, we just have to find the corresponding
projected current. Applying eqn. 5.18, we can calculate

J1(t) =
1

2U1

∫
Vcav

d3x
1

µ0
ω1E⃗1(x⃗)⃗jeff(t, x⃗) =

√
U0

U1
ηA01ω1gaγγb0(t)∂ta(t),

where the overlap factor ηA01 is defined by

ηA01 :=
1

2
√
U0U1

∫
Vcav

d3x

√
ε0
µ0
E⃗1(x⃗)B⃗0(x⃗).

A fourier transformation of the current gives

J1(ω) =

√
U0

U1
ηA01ω1gaγγ

∫
dω′

2π
(ω − ω′)b0(ω

′)a(ω − ω′).

We assume a monochromatic pump mode, i.e. b0(ω
′) = 2πδ(ω′ −ω0). Plugging the current into

eqn. 6.15 and using b1(ω) = A1(ω − (ω0 + ωg)) gives

b1(ω) =

√
U0

U1
ηA01ω1gaγγ

(ω − ω0)a(ω − ω0)

Λ2(ω − (ω0 + ωg))
,

where ωg is some arbitrary frequency that cancels in Λ2(ω − (ω0 + ωg)). From eqn. 3.30 and
6.19 (together with eqn. 3.27 and 3.28), we can directly calculate the signal PSD. The solution
is

Ssig(ω) =
ω1

Qcpl
U0(η

A
01ω1gaγγ)

2 (ω − ω0)
2Sa(ω − ω0)

|Λ2(ω − (ω0 + ωg))|2
. (D.2)

We now evaluate this PSD by making some very specific assumptions. First of all, we assume
that Sa(ω − ω0) is a monochromatic PSD centred at the Axion mass ma, i.e. Sa(ω − ω0) =
4π22ρDM/m

2
aδ(ω − ω0 −ma), where ρDM = 3.07 × 10−42GeV4 is the local DM density (see [3]

for more details). Furthermore, we make a scanning experiment, which means we can assume
Qcpl = 1010. The parameters ma and gaγγ are in principle arbitrary with only some upper
bounds from various Axion experiments (see e.g. [3]). We choose them such that, if the Axion
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Figure D.1.: Comparison of a GW signal with a dark matter Axion signal. Note that we
consider very special cases for both effects: The GW is supposed to be monochromatic and
resonant with the frequency difference of pump and signal modes. The Axion mass and coupling
are fixed to values where it would explain the entire dark matter content in the universe. However,
the possible parameter space is much larger. Note that there is a resonance in the Axion signal
at ma = 10−7 eV ≈ 152MHz. The plot shows that due to the small coupling of ηA01 ≈ 10−7 to a
MAGO-like cavity, the Axion signal is negligible and GWs are the much more promising source
to find new physics.

is a QCD Axion, it could in principle explain the dark matter content in the universe. So,
according to [3], we have1

ma = 10−7 eV gaγγ = 5× 10−17GeV−1.

The first step is to evaluate the overlap factor ηA01. For the symmetric and antisymmetric TE011

modes in the MAGO cavity, it yields

ηA01 ≈ 4.06× 10−7,

so the coupling is considerably suppressed. The total signal power can be then written as (using
eqn. 3.30)

Psig =
ω1

Qcpl
U0(η

A
01ω1gaγγ)

2 2ρDM

|Λ2(ma − ωg)|2
.

In figure D.1, we compare the signal power of the Axion with the signal power of a monochromatic
GW propagating in z-direction (scanning case). The small coupling constant ηA01 leads to a

1Note that gaγγ is not a constant since it depends on the EM-field strength. We assume a field strength as in
the ALP DM experiment, which has been done in [3] as well.
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suppressed Axion signal. Although it has to taken into account that we consider a very special
case for the parameters ma and gaγγ , we conclude that the MAGO cavity is not suitable to
measure Axions. A solution could be to use a different cavity geometry with enhanced coupling
ηA01 ∼ 1. In [3], for instance, it was suggested to use cylindrical cavities.
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E. MAGO Parameters

In this chapter, we summarize the most important parameters for the numerical simulations.
This also includes a list of the 98 strongest couplings of the MAGO-like cavity.

Table E.1.: This table lists the parameter used for the numerical calculations in this these. Note
that some of them are fixed, while others can be varied (such as the temperature, energy in the
pump mode etc.). When we explicitly calculate the total signal, we assume an optimistic GW
strain of h0 = 10−20. The values are chosen such that they are compareable to [2, 4]. Note that
RRR 300 means that the niobium has a residual resistivity ratio of 300 and RT stands for room
temperature.

Description Symbol Value

EM Quality Factors (Scanning)
Q0 1010

Qint 1010

Qcpl 1010

EM Quality Factors (Broadband)
Q0 1010

Qint 1010

Qcpl max
(
105, 2ω0

ωg

)
Mechanical Quality Factor Ql 106

Pump Mode Frequency ω0 1.773430GHz

Signal Mode Frequency ω1 1.773446GHz

Cavity Mass M 5 kg

Cavity Wall Thickness w 2mm

Cavity Volume Vcav 0.00956m3

Cavity Surface Acav 0.3111m2

Lowest Lying Mode ωmin 0.05 kHz

Minimal Displacement qrms 0.1 nm

Temperature (for cold run) T 1.8K

Strain Normalization H h0 × 12m2

GW-EM overlap ηE,B01 0.2

Axion Overlap ηA01 4.06× 10−7

Energy in Pump Mode U0 40 J

Density Niobium (RRR 300, RT) ρ 8570 kg/m3

Young’s Modulus (Nb RRR 300, RT) E 106GPa

Poisson’s Ration (Nb RRR 300, RT) ν 0.40
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E. MAGO Parameters

Table E.2.: This list show the 98 modes that have the strongest coupling to the GW. They are
selected according to the condition |C l

01| ≥ 0.001, |Γ+| ≥ 0.0001, |Γ×| ≥ 0.0001.

Frequency ωl C l
01 Γ+ Γ×

5.1396 −0.0117 0.0021 −0.0004
5.1466 0.7243 −0.0002 −0.0006
5.1609 −0.0115 −0.0002 0.0003
5.1620 0.0020 −0.0009 −0.0003
5.1675 0.0063 −0.0007 0.0003
5.1717 −0.0090 −0.0006 −0.0007
5.1747 −0.0022 0.0004 0.0008
5.1986 0.0052 −0.0033 −0.0007
5.2019 0.0242 −0.0006 0.0005
5.2318 −0.0035 −0.0102 0.0004
5.3854 −0.0042 0.0003 0.0002
5.4092 −0.0052 0.0003 0.0002
5.9586 0.1616 −0.0033 0.0017
5.9610 −0.0230 −0.0026 0.0006
5.9916 0.0022 −0.0029 −0.0002
5.9922 −0.0019 −0.0005 0.0003
5.9969 −0.0018 −0.0002 0.0003
6.0125 −0.0011 −0.0001 −0.0005
6.0520 0.0012 0.0004 0.0002
6.0734 −0.0017 0.0010 −0.0001
6.7889 0.0307 0.0053 0.0004
6.8049 −0.0050 −0.0007 0.0007
6.8076 0.0048 0.0006 −0.0019
6.8142 −0.0059 −0.0012 −0.0042
6.8274 −0.0170 0.0004 0.0006
6.9568 −0.0024 −0.0003 −0.0006
6.9670 −0.0022 0.0010 −0.0003
6.9707 0.0024 −0.0007 −0.0002
7.8904 0.0013 −0.0012 −0.0009
7.8948 0.0098 −0.0014 −0.0003
7.9000 0.0069 −0.0018 0.0006
7.9718 −0.0039 0.0005 0.0009
7.9726 −0.0030 −0.0006 −0.0005
7.9792 0.0016 −0.0006 −0.0003
7.9959 −0.0031 0.0006 −0.0007
9.2202 −0.0477 −0.0052 0.0052
9.2330 −0.0289 −0.0023 0.0026
9.2536 0.0079 −0.0017 −0.0053
9.2565 0.0037 −0.0009 0.0036
9.2640 −0.0041 0.0007 0.0012
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Frequency ωl C l
01 Γ+ Γ×

9.2723 0.0032 0.0008 0.0017
9.2838 0.0017 −0.0005 −0.0010
9.2990 0.0021 −0.0002 0.0010
9.3917 −0.0068 −0.0006 0.0001
9.4132 0.0048 −0.0005 0.0007
9.4467 −0.0183 −0.0008 0.0012
9.4902 −0.0017 −0.0042 0.0003
9.5547 0.0029 0.0012 0.0005
9.5706 −0.0023 0.0024 −0.0006
9.5971 −0.0069 −0.0004 −0.0083
9.6029 0.0201 −0.0031 −0.0002
9.6050 0.0438 0.0039 −0.0005
9.6536 0.0037 −0.0002 0.0004
9.6604 0.0036 0.0007 −0.0001
9.6859 −0.0017 0.0005 0.0005
9.7159 −0.0013 0.0004 0.0002
10.7255 0.0608 0.0013 0.0004
10.7608 0.0024 −0.0012 −0.0002
10.8048 0.0067 0.0010 0.0005
10.8647 −0.0021 −0.0004 −0.0004
10.8733 −0.0017 −0.0012 0.0003
10.9208 −0.0035 −0.0006 −0.0004
10.9483 −0.0027 0.0008 0.0004
11.4891 −0.0039 −0.0007 −0.0001
12.3825 −0.0134 −0.0026 −0.0008
12.3882 −0.0065 −0.0024 −0.0002
12.4256 −0.0046 0.0006 −0.0007
12.4399 0.0046 −0.0002 0.0006
12.4677 −0.0028 0.0002 −0.0004
12.4832 −0.0019 0.0009 0.0006
12.5046 0.0010 −0.0003 −0.0001
13.9871 0.0403 −0.0026 0.0013
13.9968 −0.0011 0.0011 −0.0003
14.0120 −0.0075 −0.0002 0.0001
14.0203 0.0059 −0.0006 −0.0006
14.0278 −0.0044 0.0003 0.0011
14.0348 −0.0012 −0.0002 −0.0004
14.0370 0.0020 −0.0002 −0.0001
14.0694 0.0025 −0.0003 0.0002
14.1734 −0.0021 0.0004 −0.0002
15.8242 0.0111 −0.0031 0.0006
15.8248 −0.0087 0.0037 0.0028
15.8429 −0.0314 −0.0005 0.0008
15.8599 0.0058 −0.0009 0.0011
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E. MAGO Parameters

Frequency ωl C l
01 Γ+ Γ×

15.8728 0.0033 0.0004 −0.0040
15.8932 −0.0036 −0.0017 0.0003
15.9152 0.0013 0.0005 0.0014
15.9884 0.0013 −0.0003 0.0018
16.0606 −0.0018 −0.0021 0.0014
16.0698 −0.0016 −0.0015 −0.0028
16.1045 0.0012 0.0005 0.0033
16.2805 −0.0010 −0.0037 0.0025
16.3200 0.0018 0.0068 −0.0036
16.3296 0.0017 −0.0022 −0.0007
16.3301 0.0076 −0.0111 −0.0042
16.3419 −0.0039 −0.0074 −0.0240
16.3579 0.0017 −0.0056 −0.0096
16.3674 −0.0017 −0.0235 0.0047

White Text
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