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Welcome!
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Setting the scene: Python and performance
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Big, oversimplified history

“just get it working” “generalize it” “make it fast”
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Example of the change in mindset. . .

5 / 28



Greg Owen’s talk on Spark 2.0 (May 2016)
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Tension between generalizability/portability and speed:

We want to write generic,
abstract code so that it can be
used on a variety of computers
and so that it can be remixed in
other applications.

We want to write fast code so
that we can analyze more data
or perform more studies on it.

Why can’t we have it all?
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There is a such thing as a “slow language.”

dynamic

hotspot-JIT

compiled
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Languages with dynamic features make the computer do

more things at runtime; those things take time.
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Caveat

Some language features are static, compile-time abstractions, which
provide generalizability/portability and speed.

▶ Modern compilers are better at generating optimized machine code than
most humans, taking full advantage of data locality, loop unrolling, SIMD
vectorization, pipelining, etc.

▶ Rust’s borrow checker eliminates all memory leaks and double-free segfaults
before the code runs, albeit by pointing them out and making the developer
fix them manually.

▶ Julia delays the compilation step, Just-In-Time or JIT-compilation, allowing
developers to work with abstract code up to the point when it needs to run.
(Many Python tools do this, too.)
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Dynamic language features

dynamic memory allocation:
malloc, new & delete

dynamic memory management:
garbage collectors

dynamic metaprogramming:
eval, macros, JIT-compilation

dynamic instruction set:
virtual machines

dynamic data types:
runtime type inspection, manipulation

dynamic task scheduling:
parallel & distributed computing
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Dynamic language features

alloc reference count GC eval VM type reflect scheduling

Fortran 77

C
√

C++
√

shared_ptr<T> vtable only std library

C++ with ROOT
√

shared_ptr<T>
√ √ √

Rust
√

Rc<T> vtable only
√

Swift
√ √

vtable only
√

Julia
√ √ √ √

std macros

Go
√ √

vtable only
√

Java (JVM languages)
√ √ √ √

std library

Lua
√ √ √ √ √

Python
√ √ √ √ √ √ √
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Why use a language with these dynamic features, anyway?
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Why use a language with these dynamic features, anyway?

"Big Data" era:
Hadoop, Spark

"Data science"
became a thing

Now
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Dynamic language features are for developers!

▶ malloc, new & delete: make objects on the fly, arbitrary graph relationships

▶ garbage collectors: eliminate all memory leaks and double-free segfaults

▶ eval, macros, JIT-compilation: deal with information that arrives “late”

▶ virtual machines: portability across hardware architectures

▶ runtime type inspection, manipulation: make runtime choices based on types

▶ parallel & distributed computing abstractions: let a scheduler worry about
ordering tasks by data dependencies
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In scientific programming and data analysis,

the developer is the user.

The time it takes you to write the code

is part of the optimization.
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Long history of attempts to use fast compiled code in Python

specialized, numerical,
opt-in JIT-compilation

converts Python into C/C++
for compilation as a new
extension module

mixes C/C++ and Python
(with annotations or as a
new language)

dynamic bindings to shared
library files ("extern C")

creates C++ bindings
from a configuation file

C++ conveniences on top
of the Python C API

direct Python API in C

1990 1995 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

dynamic C++ integration

Python C API HPy
Boost::Python

pybind11
nanobind

SWIG
SIP

Py++
pybindgen

Shiboken(2)
AutoWIG

PyCLIF

cppyy

ctypes
cffi

PyInline
pyrex

SciPy weave
Cython

shedskin
Nuitka

Pythran

Pythonic++

psyco

PyPy
Unladen Swallow

pylibjit
HOPE

Numba

Pyjion

JAX
Taichi

Seq/Codon

NVIDIA/warp

compilation or hotspot JIT
as a new Python shell

Mojo

mypyc

Pyston
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This week, you’ll see how to use dynamic features

when useful and how to avoid them when necessary.
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But first, let’s see what an implementation looks like.

% c++ -std=c++11 -O3 baby-python.cpp -o baby-python
% ./baby-python

num = -123 add(x, x) get(lst, i) map(f, lst)
oo lst = [1, 2, 3] mul(x, x) len(lst) reduce(f, lst)

. . . __/\_/\_/`' f = def(x) single-expr f = def(x, y) { ... ; last-expr }

>>

18 / 28



BACKUP
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list PyObject

type PyObject*

reference count

other stuff...

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

PyObject*

float PyObject

type PyObject*

reference count

other stuff...

float PyObject

type PyObject*

reference count

other stuff...

...

...
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array PyObject

type PyObject*

reference count

other stuff...

float

float

float

float

float

float

float

float

float

float

float

float

...
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CPU
CPU

CPU
CPU

CPU

vertical scaling

horizontal scaling

CPU
CPU

CPU
CPU

both!
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CERN Courier, March 1972
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Lukas Taylor’s summary talk at CHEP 2001
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Mentions of programming languages in CHEP talks
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Mentions of programming paradigms in CHEP talks
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Adoption of Python for CMS analysis

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo
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Parquet

PyTorch

Jupyter

NumPy

SciPy

E
Y

E
T

S

1990 2000 2010 2020 2030 2040

LS3LS2

E
Y

E
T

SLS1letters of intent to first beams
14 TeV

7.5× nominal lumi

Python

NumericPython

HDF5

ROOT

Hadoop

columnar
databases

GP-GPUs
and CUDA

Pandas

AstroPy

Spark

TensorFlow

Keras

Uproot

Awkward
Array

future

Matplotlib

Scikit-HEP

Coffea

HL-LHC eraR1 R2 R3

&

28 / 28


