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Welcome!

FAST & EFFICIENT PYTHON
PROGRAMMING SCHOOL

Aachen
19. - 22. August 2024
ctures, Tutorials, Computing Challenge
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Big, oversimplified history

—— T T T T —
1950 1960 1970 1980 1990 2000 2010 2020 2030

“just get it working” “generalize it” “make it fast”
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B I gl Ove rSI m pI Ifled h IS “ Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten

New plot and data collected for 2010-2015 by K. Rupp

40 Years of Microprocessor Trend Data
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Big, oversimplified history

extreme overclocking records
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« Early exploration: what can
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* Specialized applications
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personalized computers and  sized datasets.
the web, need portability. * Deep learning becoming
* High-level languages, effective in business
particularly object-oriented. and science.
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Example of the change in mindset. ..
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Greg Owen's talk on Spark 2.0 (May 2016) \

Performance Improvements in

Spark 2.0

ks databricks




Greg Owen's talk on Spark 2.0 (May 2016)

Volcano Iterator Model

class Filter {

def next(): Boolean = {
Standard for 30 years: almost all var found = false
. while (!found && child.next()) {
databases dO ‘t found = predicate(child.fetch())

}

return found

Each operatoris an “iterator” ’

that consumes records from def fetch(): InternalRow = {
child.fetch()

its input operator }

23
®databricks
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Greg Owen's talk on Spark 2.0 (May 2016)

What if we hire a college freshman to
implement this query in Java in 10 mins?

select count(*) from store_sales
where ss_item_sk = 1000

var count = 0
for (ss_item_sk in store_sales)
{
if (ss_item_sk == 1000) {
count += 1

}

'
®databricks »
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Greg Owen's talk on Spark 2.0 (May 2016)

Volcano - 13.95 million
rows/sec

college 125 million
freshman rows/sec
.
High throughput
‘databriCkS' Note: End-to-end, single thread, single column, and data eriginated in Parquet on disk

27
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Greg Owen's talk on Spark 2.0 (May 2016)

Volcano

1. Many virtual function calls
2. Datain memory (or cache)

3. Noloopunrolling, SIMD, pipelining

#databricks

Hand-written code

1.

3.

No virtual function calls
Data in CPU registers

Compiler loop unrolling, SIMD,
pipelining

Take advantage of all the information that is known after guery compilation

How does a student beat 30 years of research?

28
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We want to write generic,
abstract code so that it can be
used on a variety of computers
and so that it can be remixed in
other applications.
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Tension between generalizability /portability and speed:

We want to write generic, We want to write fast code so
abstract code so that it can be that we can analyze more data
used on a variety of computers or perform more studies on it.

and so that it can be remixed in
other applications.

Why can’t we have it all?
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s a such thing as a “slow language.”

https://benchmarksgame-team.pages.debian.net/benchmarksgame (23.03)

C

C++
Fortran
Rust
Julia
Java

Nodejs } hotspot-)IT
PHP
Lua
Perl
Ruby
Python
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Languages with dynamic features make the computer do
more things at runtime; those things take time.
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Some language features are static, compile-time abstractions, which
provide generalizability/portability and speed.
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Some language features are static, compile-time abstractions, which
provide generalizability/portability and speed.

» Modern compilers are better at generating optimized machine code than
most humans, taking full advantage of data locality, loop unrolling, SIMD
vectorization, pipelining, etc.

» Rust's borrow checker eliminates all memory leaks and double-free segfaults
before the code runs, albeit by pointing them out and making the developer
fix them manually.

» Julia delays the compilation step, Just-In-Time or JIT-compilation, allowing
developers to work with abstract code up to the point when it needs to run.
(Many Python tools do this, too.)
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Dynamic language features

dynamic task scheduling:
parallel & distributed computing

dynamic data types:
runtime type inspection, manipulation

dynamic instruction set:
virtual machines
R=cs
dynamic metaprogramming:
eval, macros, JIT-compilation

dynamic memory management:
garbage collectors

dynamic memory allocation:
malloc, new & delete
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Dynamic language features

alloc | reference count | GC | eval | VM | type reflect | scheduling
Fortran 77
C Vv
C++ v | shared_ptr<T> vtable only | std library
C++ with ROOT vV shared_ptr<T> V Vv V
Rust Vv Rc<T> vtable only Vv
Swift Vv vV vtable only Vv
Julia Vv NV vV std macros
Go Vv V vtable only Vv
Java (JVM languages) | V v Vv std library
Lua v V|V vi v
Python Y v VivIiv] v v
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Why use a language with these dynamic features, anyway? o

Why don't you use C instead
of Python? It's so much faster!

Why don't you commute by
airplane instead of by car? It's
so much faster!

Jake VanderPlas (SciPy; July 2015)
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Why use a language with these dynamic features, anyway?

—— Python "data analysis"
—— R "data analysis"
—— Java "data analysis"

Now
100

80

"Data science"

60 became a thing

"Big Data" era:
Hadoop, Spark

2005 2007 2009 2011 2013 2015 2017 2019 2021 2023

40
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Dynamic language features are for developers!
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Dynamic language features are for developers!

malloc, new & delete: make objects on the fly, arbitrary graph relationships
garbage collectors: eliminate all memory leaks and double-free segfaults
eval, macros, JIT-compilation: deal with information that arrives “late”
virtual machines: portability across hardware architectures

runtime type inspection, manipulation: make runtime choices based on types
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vV vy Vv VvVvyVvyy

I

Dynamic language features are for developers!

malloc, new & delete: make objects on the fly, arbitrary graph relationships
garbage collectors: eliminate all memory leaks and double-free segfaults
eval, macros, JIT-compilation: deal with information that arrives “late”
virtual machines: portability across hardware architectures

runtime type inspection, manipulation: make runtime choices based on types

parallel & distributed computing abstractions: let a scheduler worry about
ordering tasks by data dependencies

14/28



In scientific programming and data analysis,

the developer is the user.
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In scientific programming and data analysis,

the developer is the user.

The time it takes you to write the code
is part of the optimization.
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Long history of attempts to use fast compiled code in Python

Python.C API HPy
Boost::Python : s —
pybind11 ; R e N
nanobind
SWIG
SIP
Py#++
pybindgen
Shiboken(2)
AutoWIG
PyCLIF
ctypes
cffi
Pylnline
pyrex
SciPy:weave
Cython
Nuitka
shedskin s
Pythran s S
MYPYC
Pythonic++
PyPy
Unladen Swallow Pyston
Pyjion
Seq/Codon s ——
MOjO
psyco pylibjit
HOPE
Numba o
JAX =
Taichi
NVIDIA/warp
CPPYY

S B 1 1 1 1

I I I I I I I I
1990 1995 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

direct Python APl in C

C++ conveniences on top
;. of the Python C API

creates C++ bindings
from a configuation file

dynamic bindings to shared
library.files.("extern.C")
mixes C/C++ and Python
(with annotations or as a
new language)

¢ converts Python into C/C++
¢ for compilation as a new

extension module

compilation or hotspot JIT
as a new Python shell

specialized, numerical,
opt-in JIT-compilation

dynamic C++ integration
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This week, you'll see how to use dynamic features

when useful and how to avoid them when necessary.
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But first, let's see what an implementation looks like.

ct++ —-std=c++11 -03 baby-python.cpp -o baby-python
% ./baby-python

o

num = -123 add (x, x) get (1st, 1) map (£, 1lst)
[ele} 1st = [1, 2, 3] mul (x, X) len(1lst) reduce (f, 1st)
VA VA YA f = def(x) single-expr f =def(x, y) { ... ; last—expr }

>>
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BACKUP

19/28



list PyObject PyObject* —>| float PyObject
type Py"Object* PyObject* type P)'/'Object*
reference count PyObject* reference count
other stuff... PyObject* other stuff...
PyObject*
PyObject*
PyObject* float PyObject
PyObject* type PyObject*
PyObject* referen_ge count
PyObject* other stuff...
PyObject*
PyObject*
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array PyObject float
type Py"Object* float
reference count float
other stuff... float
float
float
float
float
float
float
float
float
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Python For Data Science Cheat Sheet
NumPy Basics

©

‘The NumPy library is the core library for scientific computing in

Inspecting Your Arra)

>> a.shape ‘Array dimensions
S>> len(a) Length of array
> bund: Number of aray dimensions.

Number of aray elements
Data type of rray elements
Name of data type

) Convert an array toa different type

Python. It provides a high array
object, and tools for working with these arrays.

Use the following import convention: NumPy

Darray 2Darray 3Darray

axisa
GI:T5] msn aris1 )
nankaE

Creating Arrays

(11,2,3))

Initial Placeholders

Create an array of zeros.
Createanarray of ones
enly
spaced values step vlue)
Create an array of evenly

Array Mathematics
Arithmetic Operations

2 Subtracion
/b Subtraction
Additon

add (b, a) Addition
Dwision

Dvision
Mutiplication

b Mutiplication
Exponentation

printsines of anaray
Hementwis cosine
Element wise natural logarithm)
Dot product

‘Comparison

Create constant array

Create a 2Xz identity matrix
Create an array with random values,
(2,2 Create an empty

Saving & Loading On Disk

Saving & Loading Text Files.

xt*, ) ‘

Signed 64-bit integer types

Element-wise comparison

Element-wise comparison

>> np,

_equai a, b) Array-wise comparison

Aggregate Functions

55> a-sum0 Artay-wise sum

Artay-wise minimum value
Maximum value of an aray row
Cumulative sum of the elements

Median
Correlation coefficient

ate a view of the array with the same data
ay

reate a deep copy of the array

Complex numbers represented by 128 floats
Booleantype storing 7= and £A157 values
Fixed-length string type

Fixed-length unicode type

Sortanarr

2y
Sort the elements of an arr

Select the element at the 2nd index

Select the element at row 1 column 2
(equivalent to b1 (2)

Selectitemsatindexoand 1

Selectitems at ows 0 and 1 in column 1

Select allitems at row
(equivalentto ©(0:1,
Sameas (1,2,

Reversed amay =
Select elements from = lessthan 2

Select elements 1,5, 0,2 and

Selecta subset of the matrix’s ows.

Permute array dimensions
Permute array dimensions

Flatten the array

Reshape, but don't change data
Return a new array with shape (2.6)
Append tems to.an array

Insert items in an array

Delete items from an array
Concatenate arrays

Stack arrays verticaly (row-wise)

Stack arrays verticaly (row-wise)
Stack arrays horizontally (column-wise)

)

Create stacked column-wise arrays

Create stacked column-wise arrays

Split the aray horizontally at the 3rd

Split the aray verticaly at the 2nd index’




vectorized

imperative

0
‘

#5 NumPy 0
'A"'
Aty &
@ python’ 2Numba
slow fast ]
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vertical scaling

e

horizontal scaling

P
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CERN Courier, March 1972

So-called interpretive computer lan-
guages, like BASIC, have turned out

® to be convenient for people ‘talking’
@ with the CAMAC modules via the on-
line computers at least when setting
up and testing equipment. Interpreta-
tion is unfortunately slow and there-
fore the data acquisition programs
used during the production runs must
be written in the machine language.
Test and sample programs, where time

is not so crucial, are mostly written
in FORTRAN. However, the flexibility
of BASIC can be combined with the
efficiency of the other languages via
subroutine calls from BASIC.
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Lukas Taylor's summary talk at CHEP 2001 (%)

Emerging Standard ?
Python as “Software Glue”

Clear trend towards Python 5
¢ Used by: ATLAS (Athena),CMS, DO, LHCb (Gaudi), SND,.. 5"
Used by: Lizard/Anaphe, HippoDraw, JAS (Jython)...
Architecturally, scripting is “just another service”
ROOT is the exception to the “Python rule”
> CINT interpreter plays a central role
» Developers and users seem happy

Python is popular with developers...
+ Rapid prototyping; gluing together code
** (Almost) auto-generation of wrappers (SWIG)
..but acceptance by users not yet proven
** Another language to learn, syntax,...




Mentions of programming languages in CHEP talks
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Mentions of programming paradigms in CHEP talks

percent of talks with matching title/abstract

year
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Adoption of Python for CMS analysis &

"CMS physicists" (identified by CMSSW-fork)

500 T
o —— Cor C++
S I CMSSW config
‘% 4004 Python or Jjupyter Su
> —— Python
o —== Jupyter
£
§ 300 A
©
€
(%]
S 200 -
o
G
2 100
€
35
C

0 T

2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo
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Adoption of Python for CMS analysis &

"CMS physicists" (identified by CMSSW-fork)

300 T
R ROOT (any)
b —— ROOT (C++)
£ 2307 —__ ROOT (Python)
> —— NumPy
ga 2004 ——- Matplotlib
c —-- Pandas
O
- DR TensorFlow 1
E 1501 Uproot
8 Awkward Array
1) .
= 100 A v
o
]
o)
£ 50 A
=}
<

O T T T T T T T T T
2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo
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Adoption of Python for CMS analysis &

"CMS physicists" (identified by CMSSW-fork)

> —— Scikit-Learn
g 100 —== TensorFlow /
.E ----- Keras
g 804 — PyTorch
O R XGBoost
_g — JAX
§ 60 1| === LightGBM
g ----- CatBoost
" —:= MXNet
S 401
g
“
o
@ 20
Q0
€
35
c
: 2 : =i

O L S B B R R S E L e —r r r Tt . T Tt Tt T T T R
2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
date of most recent file in repo
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letters of intent to first beams

Lsi_ 2 Ls2 —¢-LS3 LTy
% T 7.5x nominal lumi
R2 | R3 | HL-LHC era
1990 2000 2010 ... . :2020 2030 2040
Pt S MR R S Scikit-HEP © ™,
/ Python SciPy : | Uproot L 00 @)
.. NumericPython Matplotlib AstroPy

b, Gaffea p-’#!':f Awlgvard
“:‘Coffea‘:
i Jupyter; ©~====="
columnar i EFea :
databases Parquet : : *

\ O
% Awkward :
Sy Array |
!

" .@ 3 \!Vmglhnp
iminait Scikit7] £
-3
Gproot > vecTon
Erﬁcle i I Boostdt
ERTET o 8 Edims
Zz ?\'t/

future
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