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I N T R O D U C T I O N

• Bachelor in Physics at Ferrara University (2015-2018)

• Master degree in Physics: double degree Ferrara – 
Paris Sud (2018-2020)

• PhD in Paris in particle physics working for the LHCb 
experiment (2020-2023)

• Postdoctoral researcher at TU Dortmund for the 
LHCb group working on (2023-):

• Data analysis of beauty and charm decays

• LHCb trigger system: reconstruction algorithms
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O V E RV I E W

• Section 1: Heterogeneous architectures and their applications

• Section 2: GPU programming

• In Section 1:

• What does heterogeneous mean?

• Hardware accelerators

• Multi-core vs many cores

• Intro to Graphic Processing Units (GPU)

• Comparison to other accelerators

• Examples of GPU using in research
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H E T E R O G E N E O U S ?

• Systems which can use multiple types of computing cores or processors based on different computer 
architectures:

• Central Processing Units (CPUs)

• Graphic Processing Units (GPUs)

• Application-Specific Integrated Circuits (ASICs)

• Field Programmable Gate Arrays (FPGAs)

• Neural Processing Units (NPUs)

• Tensor Processing Units (TPUs)

• Different processors specialized for specific purposes

• Goal is to optimise computing performance and energy efficiency
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C O M P U T I N G  P E R F O R M A N C E

• Increasing performance as a function of time not sustaible as a function of price (exponential budget)

• Example showing ATLAS experiment CPU requirements at CERN 

• Assuming a constant budget per year, only-CPU model is not sustainable

• Must exploit the ”power” of heterogeneous systems in scientific applications

5Courtesy Dr. Bernd Panzer-Steindel (CERN/IT, CTO) 
J. Eschle et al. Computing and Software for Big Science, Vol7, A10

https://link.springer.com/article/10.1007/s41781-023-00104-x


E N E R G Y  E F F I C I E N C Y

• More and more important to reduce 
electricity consumptions and environmental 
impacts

• Giving power to processors could be more 
expensive than buying them

• Heterogeneous computing can help 
improving energy efficiency

• We need to be careful of the definition of 
“power consumption” as many factors 
come into play (power delivered, cooling 
systems, average vs peak consumption, …)
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Heterogeneous energy consumption comparison

https://blogs.nvidia.com/blog/gpu-energy-efficiency-nersc/


H E T E R O G E N E O U S  S Y S T E M S

• Common in our daily life: video encoding and editing, graphics rendering, …
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GPU accelerated rendering

https://helpx.adobe.com/in/premiere-elements/using/gpu-acceleration.html


H E T E R O G E N E O U S  S Y S T E M S

• Common in our daily life

• Used also by the top data centers in the world in many different areas 

• You can take a tour in top500.org showing the top500 computing systems in the world 

• Most of them use NVIDIA or AMD GPU accelerators showing the need of heterogeneous systems for 
top performance

A. Scarabotto - GPU programming 8C. Feng at al. (2015). arXiv:1208.4247

Multi-core vs many cores?

https://www.top500.org/statistics/overtime/
https://arxiv.org/abs/1208.4247


H E T E R O G E N E O U S  S Y S T E M S
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https://www.top500.org/statistics/overtime/

• Also most of the data 
centers in the GREEN500 list 
use accelerators

https://www.top500.org/statistics/overtime/
https://www.top500.org/lists/green500/2024/06/


H A R D WA R E  A C C E L E R A T O R S  I N  R E S E A R C H
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Graphic Processing Units (GPUs)
Vendors: NVIDIA, AMD, Intel

Field Programmable Gate Arrays (FPGAs)
Vendors: Xilinx, Altera

Neural Processing Units (NPUs)
Vendors: AMD, Intel, …
Processor specialised in AI and ML

Tensor Processing Units (TPUs)
Vendor: Google
ASIC specialised in NN machine learning

• Tradeoffs between flexibility and single-task optimised performance



M U LT I - C O R E  V S  M A N Y  C O R E S
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Multi-core CPU

• O(10) cores

• Flexibility of sequential and parallel code 
programming

• Large caches (fast memory storage)

• Focused on single-thread high performace

GPU with many cores

• O(1000) cores

• Designed for parallel code programming

• Small caches

• Focused on operation of simpler calculations 
per single-thread



W O R K L O A D :  M U LT I - C O R E  V S  M A N Y  C O R E S
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Multi-core CPU

• Typically the main processor

• Best sequential performance

• Multi-threading optimisation needed in 
parallelizable problems 

GPU with many cores

• Usually paired with a CPU

• Algorithms optimised to profit from the 
many cores of the accelerator 

• Only highly parallelizable problems



G R A P H I C  P R O C E S S I N G  U N I T  ( G P U )

• GPU were first developed for 
graphics pipelines only

• Now general purpose processors 
(often used for AI applications)

• Programmed with high-level 
language

• Usually, CPU is the main processor 
with GPU as accelerator

• PCIe connection allows high 
throughput (up to 16 GB/s per lane)
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PLOS ONE 8(5): e62789

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062789


H E T E R O G E N E O U S  S Y S T E M

• CPU core, latency optimised (= low 
delay in transferring data):

• Low number of cores

• Complex control units

• Large caches

• GPU accelerators, throughput 
optmised (= high faction of data 
trasferred simultaneously):

• High number of cores

• No complex control units

• Small caches
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PLOS ONE 8(5): e62789

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062789


G P U  V S  C P U :  S P E C I F I C A T I O N S  E X A M P L E

Core 
count

Bandwid
th

Peak Compute 
performance

Frequency Memory 
capacity

Transistor 
count

Price

CPU
AMD 
Ryzen 5 
5600G

6 48 GB/s 1.7 TFLOPS 3900 MHz 64 GB 10.7 M 260 $

GPU
NVIDIA 
RTX 3090

10496 936 
GB/s

35.5 TFLOPS 
(single 
precision)

1395 MHz 24 GB 28.3 M 1500 $
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• GPUs provide higher data transfer speed (bandwidth), meaning also a higher number of floating points 
operations per second (FLOPS)

• CPUs compute more instructions per second (frequency) exploiting a larger memory capacity

https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622


F I E L D  P R O G R A M M A B L E  G A T E  A R R A Y S  ( F P G A )

• Thousands of logic blocks connected via programmable interconnect

• Hardware implementation of an algorithm

• Advantages:

• Fast integer computations (low latency)

• Does not require a CPU (any data source)

• High bandwidth

• Disadvantages:

• Medium floating point operations performance

• High engineering cost

• Not easy backward compatibility with other processors types
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National Instruments

https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-fundamentals.html


A C C E L E R A T O R S  C O M PA R I S O N

17JINST 15 C06010 (2020)

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/C06010


C H A L L E N G E S  W I T H  H E T E R O G E N E O U S  C O M P U T I N G

• Different challenges may arise when exploiting the heterogeneous computing:

1. Instruction sets can produce results which are bit-wise not reproducible

• Check in advance minimum required resolution (integer, floating point, …)

2. Slow interconnects can cause bandwidth bottlenecks:

• Try to minimize copies between devices

3. Data layout might not be suitable for all devices architectures or memory structures:

• Minimize transformations between data layouts

4. Different compilers and/or programming interfaces:

• Use programming environments for heterogeneous computing
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E X A M P L E S  O F  G P U  U S A G E  I N  R E S E A R C H

• Trigger at high energy physics experiments

• The LHCb experiment is taking data with fully-software trigger: first-level based on GPUs (HLT1)

• Why trigger? And why GPUs?

A. Scarabotto - GPU programming 19



T R I G G E R :  R E A L  T I M E  A N A LY S I S

• At CERN, the Large Hadron Collider (LHC) 
provides the LHCb experiment 40 million 
proton-proton beams collisions per 
second à 4 TB of data per second

• Trigger = filtering and selection of the 
events ( = beam-beam collisions)

• Select decay of particles containing b- and 
c- quark, signatures: displaced vertices, 
momentum, particle type

• Sub-detectors which allow tracking and 
particle identification, which needs to be 
done “live”: Real-Time Analysis (RTA)
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R. Aaij et al 2024 JINST 19 P05065

https://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05065


T H E  L H C B  T R I G G E R :  G P U S

• Goal: perform the reconstruction for each of the events in the 4 TB/s and reduce it of a factor ~40 
reaching 100 GB/s (HLT1)

• Architecture optimised on throughput à GPUs
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The LHCb trigger GPUs

Huge data load High throughput 
Many FLOPS

Parallel problems: pp collisions (event)
Within one event: tracks

Highly parallelizible 

Small raw event data (~100KB) PCIe connection -> limited I/O
~1000 events fit in GPU memory O(10)GB



R E C O N S T RU C T I O N  A L G O R I T H M

• How to fully exploit the parallelization power of GPUs?

• Goal: reconstruct tracks traversing the whole LHCb detector, fundamental for triggering

• Parallelization levels:

1. Over events, independent p-p collisions

2. Over input tracks, extrapolate straight tracks in VELO+UT into the magnetic field reaching the SciFi

3. Over hits in SciFi, meaning possible extrapolations segments
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arXiv:2402.14670

https://arxiv.org/abs/2402.14670


M A C H I N E  L E A R N I N G

• The training of machine learning (ML) methods require large 
amounts of data to handle à high throughput of GPUs

• Many ML methods, for example neural networks, use very 
parallelizible methods: matrix multiplication

• Can be trained using reduced precision

• Artificial intelligence (AI) uses neural networks for fast training 
and inference from input data

• GPU performance has increased around 7000 times since 2003, 
also in terms of price per performance

A. Scarabotto - GPU programming 23GPUs for AI

https://blogs.nvidia.com/blog/why-gpus-are-great-for-ai/


S U M M A R Y  O F  F I R S T  PA R T

• Heterogeous computing is critical to improve performance and energy efficiency of our code system

• Commonly used in our day-by-day life (video/graphics) but also by top computing clusters in the world

• Using heterogenous computing in research: General Purpose GPU

• GPUs are throughput-optimised processors vs CPU which are latency-optimised

• Examples of research applications: high energy physics trigger system, machine learning, …

A. Scarabotto - GPU programming 24



E N D  O F  F I R S T  PA R T

A N Y  Q U E S T I O N S ?

B R E A K ?

L E T ’ S  D I V E  I N T O  G P U  P R O G R A M M I N G

B U R  B E F O R E …

R E G I S T E R  T O  T H E  V I S PA  C L U S T E R :
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https://vispa.physik.rwth-aachen.de

Just need username and email

https://vispa.physik.rwth-aachen.de/


O V E RV I E W

• Section 1: Heterogeneous architectures and their applications

• Section 2: GPU programming

• In Section 2:

• GPU for graphics

• GPU for general purpose

• Composition and parallelization

• Memory layout

• Functions declaration and a first CUDA kernel

• Parallelization in CUDA and memory management 
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G P U  A S  G R A P H I C  P R O C E S S O R S

Step by step of how to produce graphics:

1. Vertex and index inputs: description of 
the images using vertices and edges to 
triangles

2. Vertex shading: calculate the final 
position on the screen of each vertex

3. Rasterization: get pixel-by-pixel colors

4. Pixel shading: transform color of the 
pixels based on the textures (material, 
light, …). This is usually the most GPU 
expensive step

5. Rendering: write output to final render 
target

27
http://fragmentbuffer.com/gpu-performance-for-game-artists/



G R A P H I C S  R E Q U I R E M E N T S
• Graphics pipelines compute a huge amount of simple arithmetics on independent data

• Transforming positions, get pixel colors, apply texture properties, …

• Hardware-wise:

• Memory should be accessed simultaneously and contiguosly (no need of huge memory capacity)

• Bandwidth and throughput far more important than latency

• Floating-point precision needed

• GPU processors have the perfect requirements!
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U S I N G  G P U S  F O R  G E N E R A L  P U R P O S E

• Starting from around 2000s, with advent of programmable shaders and floating point operation 
support, GPU processors became popular also as General Purpose (GPGPU) systems

• When is it beneficial? Amdahl’s law

• Speedup = 1/(S + P/N)

• S: sequential part

• P: parallel component

• N: number of processors

• One most consider how much of the            
algorithmic problem can be parallelized

• Example: if 95% of the algorithm can be            
parallelized the gain could be up to 20 times
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https://en.wikipedia.org/wiki/Amdahl%27s_law


G P U  C O M P O S I T I O N :  H A R D WA R E
• GPU consists in elements which can perform Single Instruction in Multiple Threads (SIMT)

A. Scarabotto - GPU programming 30

PCIe connection

Memory controller

Cache memory



S I S D ,  M I M D  A N D  S I M T

• SISD: Single Instruction Single Data à Uniprocessors machines

• MIMD: Multiple Instructions Multiple Data à Multi-core or grid processors

• Vectorised instructions, as in modern CPUs

• SIMT: Single Instruction Multiple Threads à GPUs

• Each thread performs the same instruction but on different data

• Synchronization steps are needed
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G P U  C O M P O S I T I O N :  H A R D WA R E
• Processors (= SIMT cores) are organised in streaming multiprocessors (SM) which compose the GPU

• How does the parallelization work? How is it assigned in the hardware?

• What kind of memory we have available?

A. Scarabotto - GPU programming 32

PCIe connection

Memory controller

Cache memory



PA R A L L E L I Z A T I O N

• The GPU code (kernel) is executed in many 
threads

• The total number of threads are split into 
blocks (fixed set of threads, generally 
maximum of 1024)

• Each thread processes the same instruction, 
the kernel, each one on different data

• We can go up to 3 dimensions both in blocks 
and threads
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A S S I G N M E N T  T O  S T R E A M I N G  M U LT I P R O C E S S O R S

• Once the kernel is defined, the processes are divided into blocks a scheduled to the streaming 
multiprocessors (SM) of the GPU according to resource usage (memory, registers, …)

• The execution of the blocks is arbitrary
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WA R P S  A S S I G N M E N T

• Within a block, threads are processed in warps ( = 32 threads in Nvidia GPUs)

• Warps are the smallest entity, meaning block size should be chosen as multiple of 32 (or warp_size)

• This ensures no threads are inherently in idle state
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M E M O R Y  L A Y O U T  A N D  U S A G E
• The GPU has 3 main kind of memory:

1. Global memory: high latency, GBs of space

• Main memory

• Communication with the CPU (host)

2. Caches: lower latency, KBs of space

• Shared memory: allows communication among threads in 
one block

• Constant memory: read-only memory (only write from 
host), used to store constants

3. Registers: lowest latency configurable (usually 255 registers 
per thread)

• Accessible only from single thread

• All variables defined are stored in registers

• If exceded, can result in performance penalty
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C P U - G P U  C O M M U N I C A T I O N

• The CPU is required to launch the applications as the host

• The host offloads some of the work in the GPU as the device

• The host takes care of the application at all times (stopping, pausing, …)

• All input data start from the host which populates the global memory and all data must return to the 
host when the process is finished

• Once in the global memory, data can be stored in constant, shared memory or registers based on the 
need (all their contents are flushed once the kernel function terminates)
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G P U  P R O G R A M M I N G  E N V I R O N M E N T S

• NVIDIA programming interface: CUDA

• Works only with NVIDIA GPUs

• Well documented, many tutorial

• AMD ROCm (HIP): open source platform

• Support AMD and NVIDIA GPUs

• Newer development, less documentation

• OpenCL: framework for heteorgeneous platforms

• CPU, GPU, FPGA, …

• SYCL: C++ heterogeneous platform based on OpenCL

• Intel GPUs
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A  F I R S T  C U D A  K E R N E L

• Let’s have a first look at a simple CUDA kernel:

• Identifier: __global__

• Indices: blockIdx.x and threadIdx.x

• No std::cout allowed in the device, using printf
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F U N C T I O N  D E C L A R A T I O N

• We have different identifiers which can be used in CUDA:

1. __global__ : function called from host and executed on device

2. __device__: function called from device and executed on device

3. __host__ : function called from host and executed on host

A. Scarabotto - GPU programming 40



I N D I C E S  A N D  PA R A L L E L I Z A T I O N

• Inside a CUDA kernel, indices help identify single threads

• One-dimensional example of 3 blocks with 4 threads each:

• gridDim.x = 3, number of blocks in the grid

• blockIdx.x identifies the current block number

• blockDim.x = 4, refers to the number of threads in the block

• threadIdx.x identifies the current thread number

• This means that the formula blockIdx.x * blockDim.x + threadIdx.x uniquely identifies one thread

• Example: blockIdx.x = 1 and threadIdx.x = 2 à data index =  6

41

0 1 2 3

4 5 6 7

8 9 10 11

gridDim.x = 3

blockDim.x = 4

blockIdx.x = 0

blockIdx.x = 1
blockIdx.x = 2

threadIdx.x = 0 threadIdx.x = 1 threadIdx.x = 2 threadIdx.x = 3



I N D I C E S  C O N F I G U R A T I O N S

• Grid and block sizes can be defined up to 3 dimensions, which can help in the parallelization process

• This mean we can have x, y, z:

• gridDim.x, gridDim.y, gridDim.z

• blockIdx.x, blockIdx.y , blockIdx.z 

• blockDim.x, blockDim.y, blockDim.z

• threadIdx.x, threadIdx.y, threadIdx.z

• The maximum number of threads per block is 1024, which cannot be exceded (multiplication of the 3 
dimensions)

• The maximum number of blocks varies per hardware, usually 65535 per dimension
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RU N N I N G  A  F I R S T  C U D A  K E R N E L

• We need to define grid size and block size

• dim3 is a CUDA specific variable taking up to 3 input variables defining the sizes in 3 dimensions

• cudaDeviceSynchronize() waits for all requested tasks on device to be finished (here waiting for the 
printf to print out values)
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Any parameters to be 
passed in the kernel can 
be added in ()



S Y N C H R O N I Z A T I O N

• The execution of blocks and threads is arbitrary

• If we want to ensure all work has finished, synchronization is needed

• It can be done at grid- and block-level:

• cudaDeviceSynchronize() waits for all work on the device to be 
finished, meaning all blocks and also memory copies

• __syncthreads() waits for all threads inside one block to finish their 
work, can be written within the kernel code (for example when 
having 2 consecutive loops)
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F O R  L O O P  A N D  P A R A L L E L I Z A T I O N :  E X A M P L E

• Example: writing an vector addition kernel, with x, y and z of size N
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1 4 7 2 3 1

2 0 2 6 4 2

3 4 9 8 7 3

+

=

x

y

z
• How yould you do it in CPU?



F O R  L O O P  A N D  P A R A L L E L I Z A T I O N :  E X A M P L E
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• Running on a single block using size N as number of threads

• Making the loop in this way forces the block dimension to be N, otherwise we lead to incorrect results 
or out bounds accessesà how to avoid this?

Grid dimension 1 and 
block dimension N

Index value different 
for each of the N 
threads in the block



F O R  L O O P  A N D  P A R A L L E L I Z A T I O N :  E X A M P L E

A. Scarabotto - GPU programming 47

• Making a block-dimension strided loop:  block-dimension can be any number n

• Stride = blockDim.x = n
• If n >= N: the loop will be the same as previous slide
• If n < N: some or all threads will make more than 1 iteration

Grid dimension 1 and 
block dimension n

Block-dimension 
strided



F O R  L O O P  A N D  P A R A L L E L I Z A T I O N :  E X A M P L E
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• Making a block-dimension strided loop:  block-dimension can be any number n

• Stride = blockDim.x = n

• If n >= N: the loop will be the same as previous slide

• If n < N: some or all threads will make more than 1 iteration

• Example: N = 6

• If n = 8, first 6 go in each thread, last 2 do not satisfy i < N in loop

• If n = blockDim.x = 4, first 4 go in first iteration of the loop (4 threads), then 2 calculation go in 
second iteration i+= blockDim.x 

1 4 7 2 3 1x
0 1 2 3 4 5



F O R  L O O P  A N D  P A R A L L E L I Z A T I O N :  E X A M P L E
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• Making a grid- and block-dimension strided loop:  with grid-dimension m and  block-dimension n

• Stride = blockDim.x * gridDim.x

• Start = threadIdx.x + blockIdx.x * blockDim.x

• Iterating in this way in all threads across all blocks, profiting from maximum parallelization

Grid dimension m and 
block dimension n



G L O B A L  M E M O R Y  M A N A G E M E N T

• Vector addition example, how to handle memory for our vectors from host to device?
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1. Allocate global memory in device of 
size N with cudaMalloc

2. Populate global memory with data 
using cudaMemcpy: 
cudaMemcpyHostToDevice

3. Run kernel

4. Synchronize after kernel completion

5. Read inputs back in host: 
cudaMemcpyDeviceToHost

6. Pointer to global memory to be freed 
with cudaFree



A  W O R D  O N  S H A R E D  M E M O R Y

• It is useful to define allocate shared memory from the kernel for much faster data usage, knowing its 
limited size

• If its size is known in advance, it is better to allocate the correct size:

• __shared__ float variable_sh[N];

• Otherwise shared memory could also be allocated dynamically, but size must be known in the host by 
passing an additional argument in the kernel call

• __shared__ float variable_sh[];

• kernel_name<<m,n, N * sizeof(float)>>();
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A T O M I C  O P E R A T I O N S  A N D  R A C E  C O N D I T I O N S

• We need to be cautious when modifying a value in memory and reading it again in different threads:

• Timing of threads can be different

• Three main operations: read, modify and write

• Use atomic operations:

• Makes the read-write-modify as a single operation = cannot be interrupted

• atomicAdd(), atomicSub(), …

• Usual use-cases: counting elements, searching elements in array, histogramming, …

A. Scarabotto - GPU programming 52



S A T U R A T I N G  G P U :  D E B U G G I N G

• We need to avoid saturating shared memory (O(KBs) and 
registers (255 per thread max) which can cause loss of 
performance

• Several ways to debug and profile (dynamic program 
analysis) GPU code:

• nvprof: profiler built-in CUDA

• cuda-gdb: command line debugger based of gdb

• Nvidia nsight (ncu): debugger and profiler implemented 
in VS Code and usable from command line

• nsys: command line profiler which produce analytics
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O T H E R  E X A M P L E :  M A T R I X  M U LT I P L I C A T I O N
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• We quickly introduce tiling and coalasced memory accesses



T I L I N G

• Tiled data processing: dividing large datasets into many tiles which are processed at one time

• It is useful when data have similar patterns, such that threads can access memory in a tiled way

• Typical tiled-process:

1. Load tile from global to shared memory

2. Synchronize

3. Multiple threads access the data in shared memory

4. Synchronize

5. Move to the next tile

• Example: multiply two arrays of any given size by dividing it into tiles
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C O A L E S C E D  M E M O R Y  A C C E S S

• Global memory is organized into bursts sections, each cell representing a byte

• If threads make a memory request under the same burst section, the access is coalesced

• Non-coalesced memory access can significantly affect performance

• Advice:

• Access index to an array X should have a part depedent and indendent of threadIdx.x

• Example: X[ x0 + threadIdx.x] with x0 independent of thread index 
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O T H E R  E X A M P L E :  M A T R I X  M U LT I P L I C A T I O N

• Advice: always store higher order arrays into 1D array 

• Matrix multiplication becomes a 1D array multiplication: 

• X of size m x n

• Y of size n x k

• Result is Z of size m x k
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O T H E R  E X A M P L E :  M A T R I X  M U LT I P L I C A T I O N

• Matrix multiplication becomes a 1D array multiplication: 

• X of size m x n

• Y of size n x k

• Result is Z of size m x k

• With this method access to Y are coalesced while X accesses are not

• This can be improved using shared memory
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O T H E R  E X A M P L E :  M A T R I X  M U LT I P L I C A T I O N

• This can be improved using shared memory, by preloading all elements of X and Y

• Only using coalesced accesses as all threads can access shared memory

• Example on how to load shared memory and using function of the previous slide to do 16 x 16 matrix 
multiplication
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S T R E A M  A N D  P I P E L I N E S

• A stream is a sequence of commands to be executed in order, example, kernel invocations, memory 
transmissions and allocations, synchronizations, …

• Any instructions run in a stream must complete before the next instruction is issued 

• CUDA uses a default stream

• Non-default stream can be defined, but the default one will always have priority

• GPUs can actually perform in this way data transmissions while executing kernels = pipeline

• Typical pipeline with 3 streams:

• Use SMs to perform computations

• Transfer data from host to device

• Transfer data from device to host (using cudaMemcpyAsync to transfer data asynchrounsly in a 
non-default stream)
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S U M M A R Y

• Starting from year ~2000, GPUs were starting to be used for general purpose

• It is important to understand how and how much of our algorithm can be parallelized

• GPUs are single instruction multiple threads (SIMT) devices

• Parallelization organised in blocks and threads

• The CPU-GPU communication is fundamental as the CPU is in charge of all time of the process and 
can offload some work to the GPU

• It is important to know and understand the memory layout of a GPU to achieve the best performance 
and use them in the best way

A. Scarabotto - GPU programming 61



R E S O U R C E S  U S E D  I N  T H I S  T A L K

• Most of what I learned comes from Dorothea vom Bruch (physics researcher at CPPM in Marseille) and 
Daniel Campora (now Nvidia engineer)

• They do also amazing lectures, from which I took all the inspiration: tCSC2023 and tSCS2024

• Where to find material:

• https://docs.nvidia.com/cuda/cuda-c-programming-guide

• D. B. Kirk, W. w. Hwu: “Programming Massively Parallel Processors” 

• J. Sanders, E. Kandrot: “CUDA by Example: An Introduction to General-Purpose GPU Programming”

• N. Wilt: “The CUDA Handbook: A Comprehensive Guide to GPU Programming” 
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