HETERQGENEOUS COMPUTING:
GPU PRQGRAMMING

Alessandro Scarabotto
. Jil) Dortmund Germany
Email; alessandro scaraboito@cernch

Fast and Efficient Python Programming School
August 2024 -
Aachen, Germany

technische universitat Cw
- dortmund \

mailto:alessandro.scarabotto@cern.ch

INTRODUCTION

» Bachelor in Physics at Ferrara University (2015-2018) Universita 4 UNIVERSITE
. - - degli Studi N PARIS
. I\/Iagter degree in Physics: double degree Ferrara — di Ferrara SLD
Paris Sud (2018-2020)

« PhD in Paris in particle physics working for the LHCb szg FVBEOR?II'\I[E
experiment (2020-2023)

» Postdoctoral researcher at TU Dortmund for the

LHCb group working on (2023-): === | technische universitat
. . & dortmuna
« Data analysis of beauty and charm decays

« LHCb trigger system: reconstruction algorithms

A. Scarabotto - GPU programming

OVERVIEW

» Section 1: Heterogeneous architectures and their applications

» Section 2: GPU programming

* In Section 1:
* \What does heterogeneous mean?
« Hardware accelerators
* Multi-core vs many cores
* Intro to Graphic Processing Units (GPU)
« Comparison to other accelerators

« Examples of GPU using in research

A. Scarabotto - GPU programming

HETEROGENEOUS!

« Systems which can use multiple types of computing cores or processors based on different computer
architectures:

» Central Processing Units (CPUs)

» Graphic Processing Units (GPUs)

» Application-Specific Integrated Circuits (ASICs)
* Field Programmable Gate Arrays (FPGAS)

* Neural Processing Units (NPUs)

* Tensor Processing Units (TPUs)
» Different processors specialized for specific purposes

» Goal is to optimise computing performance and energy efficiency

A. Scarabotto - GPU programming

COMPUTING PERFORMANCE

* Increasing performance as a function of time not sustaible as a function of price (exponential budget)
* Example showing ATLAS experiment CPU requirements at CERN
« Assuming a constant budget per year, only-CPU model is not sustainable

* Must exploit the "power"” of heterogeneous systems in scientific applications

& L A A ek CHF/HS06 Price/performance evolution of installed CPU servers (CERN)
g 2 ATLAS Pre||m|nary] 1o00.00
S - 2022 Computing Model - CPU .
o — . =
() B %3
S 4 o
= [~ e Conservative R&D i a
- 3 M 5‘) \
c v Aggressive R&D
S L _ P 7] 100.00 \x‘
=4 - — Sustained budget model P .
g 30 [(+10% +20% capacity/year) 7 — \
7} A 1
: L . 1 A
8 B = \ HDD {> S50 2GB-p3GB/¢ore memory
= - ¥ \\33% ‘l, L~
= 20 - 21% 2%) m 9% mprovement/year
3 - il 10.00 ‘\%Rp-uq;._% 1% gy -8 %
§ - 4 30% g "8'".3_':5--....!
= B il 10% e
< 10 __ __ 120% RAM price increase Al~x1.4
0 —I 1 o o NjSsr e |, o o [o SEScenesee el , o | Sy 3 1.00
2020 2022 2024 2026 2028 2030 2032 2034 2036 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026

Year

Courtesy Dr. Bernd Panzer-Steindel (CERN/IT, CTO) =

J. Eschle et al. Computing and Software for Big Science, Vol7, A10

https://link.springer.com/article/10.1007/s41781-023-00104-x

ENERGY EFFICIENCY

 More and more important to reduce

.. : . Energy Consumed per Job
electricity consumptions and environmental & g

B cPu B GPU

Impacts

DeepCAM

» GIving power to processors could be more
expensive than buying them il

* Heterogeneous computing can help
Improving energy efficiency

Berkeley GW
« We need to be careful of the definition of o
“power consumption” as many factors 0 100 200 300
come Into play (power delivered, cooling Eneray per job (kIWh -lower is beter)
systems, average vs peak consumption, ...)

Heterogeneous energy consumption comparison

A. Scarabotto - GPU programming

https://blogs.nvidia.com/blog/gpu-energy-efficiency-nersc/

HETEROGENEOUS SYSTEMS

« Common in our daily life: video encoding and editing, graphics rendering, ...

GPU accelerated rendering

A. Scarabotto - GPU programming

https://helpx.adobe.com/in/premiere-elements/using/gpu-acceleration.html

HETEROGENEOUS SYSTEMS

Common in our dalily life

top performance

PCI express

.
”~

Used also by the top data centers in the world in many different areas

GPU

CPU
~
Core(y ,1 Coreq ,1
Core() ,0 Coreq ,0
\ §
Main Memory

A. Scarabotto - GPU programming

ol
-~

{

GPU Memory

C. Feng atal. (2015). arXiv:1208.4247

You can take a tour in top500.org showing the topb00 computing systems in the world

Most of them use NVIDIA or AMD GPU accelerators showing the need of heterogeneous systems for

Multi-core vs many cores?

https://www.top500.org/statistics/overtime/
https://arxiv.org/abs/1208.4247

HETEROGENEOUS SYSTEMS

A Area - Share

2016 2017 2018 2019 2020 2021 2022 2023

https://www.top500.0org/statistics/overtime/

A. Scarabotto - GPU programming

Rank

. Research

IT Services
. Chemistry
[software
. Geophysics
. Aerospace
. Electronics
[T web services
. Semiconductor
|:| Telecommunication

. Defense

System

Frontier - HPE Cray EX235a, AMD
Optimized 3rd Generation EPYC 64C 2GHz,
AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/0Oak Ridge National Laboratory
United States

Aurora - HPE Cray EX - Intel Exascale
Compute Blade, Xeon CPU Max 9470 52C
2.4GHz, Intel Data Center GPU Max,
Slingshot-11, Intel

DOE/SC/Argonne National Laboratory
United States

Eagle - Microsoft NDv5, Xeon Platinum
8480C 48C 2GHz, NVIDIA H100, NVIDIA
Infiniband NDR, Microsoft Azure
Microsoft Azure

United States

Supercomputer Fugaku - Supercomputer
Fugaku, A64FX 48C 2.2GHz, Tofu
interconnect D, Fujitsu

RIKEN Center for Computational Science
Japan

LUMI - HPE Cray EX235a, AMD Optimized
3rd Generation EPYC 64C 2GHz, AMD
Instinct MI1250X, Slingshot-11, HPE
EuroHPC/CSC

Finland

Cores

8,699,904

9,264,128

2,073,600

7,630,848

2,752,704

Others
. Weather and Climate Research
. Energy
. Finance

Information Service
- Logistic Services

. Services

D Information Processing Service

[Automotive
. Database
Rmax Rpeak Power
(PFlop/s) (PFlop/s) (kW)
1,20600 171481 22,786
1,01200 1,980.01 38,698 7
56120 84684 8
442.01 537.21 29,899 9
379.70 531.51 7,107 10

* Also most of the data

centers in the GREENS0O list
use accelerators

Alps - HPE Cray EX254n, NVIDIA Grace 72C
3.1GHz, NVIDIA GH200 Superchip,
Slingshot-11, HPE

Swiss National Supercomputing Centre
(cscs)

Switzerland

Leonardo - BullSequana XH2000, Xeon
Platinum 8358 32C 2.6GHz, NVIDIA A100
SXM4 64 GB, Quad-rail NVIDIA HDR100
Infiniband, EVIDEN

EuroHPC/CINECA

Italy

MareNostrum 5 ACC - BullSequana
XH3000, Xeon Platinum 8460Y+ 32C
2.3GHz, NVIDIA H100 64GB, Infiniband
NDR, EVIDEN

EuroHPC/BSC

Spain

Summit - IBM Power System AC922, IBM
POWERS9 22C 3.07GHz, NVIDIA Volta GV100,
Dual-rail Mellanox EDR Infiniband, IBM
DOE/SC/0ak Ridge National Laboratory
United States

Eos NVIDIA DGX SuperPOD - NVIDIA DGX
H100, Xeon Platinum 8480C 56C 3.8GHz,
NVIDIA H100, Infiniband NDR400, Nvidia
NVIDIA Corporation

United States

1,305,600

1,824,768

663,040

2,414,592

485,888

270.00

241.20

175.30

148.60

121.40

353.75

306.31

249 .44

200.79

188.65

5,194

7,494

4,159

10,096

https://www.top500.org/statistics/overtime/
https://www.top500.org/lists/green500/2024/06/

HARDWARE ACCELERATORS IN RESEARCH

» Tradeoffs between flexibility and single-task optimised performance

General purpose Dedicated
Graphic Processing Units (GPUs) Neural Processing Units (NPUs)
Vendors: NVIDIA, AMD, Intel Vendors: AMD, Intel, ...

Processor specialised in Al and ML

Field Programmable Gate Arrays (FPGASs) Tensor Processing Units (TPUs)

Vendors: Xilinx, Altera Vendor: Google
ASIC specialised in NN machine learning

A. Scarabotto - GPU programming 3 10

MULTI-CORE VS MANY CORES
Multi-core CPU

« O(10) cores

» Flexibility of sequential and parallel code

programming

« Large caches (fast memory storage)

* Focused on single-thread high performace

A. Scarabotto - GPU programming

~

CPU

Coreqy 1 Corey 1

Coreg Corey o
Main Memory

GPU

GPU with many cores
O(1000) cores

Designed for parallel code programming
Small caches

Focused on operation of simpler calculations
per single-thread

)

GPU Memory

11

WORKLOAD: MULTI-CORE VS MANY CORES

Multi-core CPU

* Typically the main processor

« Best sequential performance

* Multi-threading optimisation needed in
parallelizable problems

GPU

CPU

Coreqy 1 Corey 1

Coreg Corey o
Main Memory

A. Scarabotto - GPU programming

GPU with many cores
* Usually paired with a CPU

* Algorithms optimised to profit from the
many cores of the accelerator

* Only highly parallelizable problems

)

GPU Memory

12

GRAPHIC PROCESSING UNIT (GPU)

GPU were first developed for
graphics pipelines only

Now general purpose processors
(often used for Al applications)

Programmed with high-level
language

Usually, CPU is the main processor
with GPU as accelerator

PCle connection allows high
throughput (up to 16 GB/s per lane)

A. Scarabotto - GPU programming

CPU core| |CPU core| |CPU core| |CPU core
and and and and GPU Ll
Cache Cache Cache Cache cores t—

Cache Local |
Memory
Host Memory

PCI-e Bus

GPU Compute Units

..........
..........
..........
..........
..........
..........
..........

..........

Device Memory
(Global Memory)

PLOS ONE 8(5): 62789

13

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062789

HETEROGENEOUS SYSTEM

« CPU core, latency optimised (= low
delay in transferring data):

* Low number of cores
« Complex control units
» Large caches
* GPU accelerators, throughput

optmised (= high faction of data
trasferred simultaneously):

* High number of cores
* No complex control units

« Small caches

A. Scarabotto - GPU programming

CPU core
and
Cache

CPU core
and
Cache

CPU core
and
Cache

Host Memory

GPU Compute Units

Device Memory
(Global Memory)

PLOS ONE 8(5): 62789

14

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062789

GPU VS CPU: SPECIFICATIONS EXAMPLE

« GPUs provide higher data transfer speed (bandwidth), meaning also a higher number of floating points
operations per second (FLOPS)

« CPUs compute more instructions per second (frequency) exploiting a larger memory capacity

Bandwid | Peak Compute | Frequency Memory Transistor
performance capacity count

6 48 GB/s 1.7 TFLOPS 3900 MHz 64 GB 10.7 M 260 $

GPU 10496 936 35.5 TFLOPS 1395 MHz 24 GB 28.3 M 1500 $

NVIDIA GB/s (single
RTX 3090 precision)

A. Scarabotto - GPU programming 15

https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622

FIELD PROGRAMMABLE GATE ARRAYS (FPGA)

Thousands of logic blocks connected via programmable interconnect

« Hardware implementation of an algorithm R Y D)
U ,‘-‘—-‘. | I— o O O O R O 01 9 ; j‘:\}ﬁh-w : i
» Advantages: === e DO 0080 o/ IS515 I I
G oEm "“--.QIO‘O COCH0O S, - LLJ ruﬂi
O ' - — i R0 0 — =
Fast integer computations (low latency) O W (o880 000006 8]~ epi] =
, PROGRAMMABLE cDOOCO0N0 e /O BLOCKS
* Does not require a CPU (any data source) INTERCONNECT 100000000 3
— 39 COCQOVO
« High bandwidth ! [_k;g;:;?*ﬁ 22000000
g iz
° I o] 1 | T e = ?
Disadvantages: LGP s L,
* Medium floating point operations performance LOGIC BLOCKS
» High engineering cost National Instruments

* Not easy backward compatibility with other processors types

A. Scarabotto - GPU programming

https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-fundamentals.html

JINST 15 C06010 (2020)

ACCELERATORS COMPARISON

CPU GPU FPGA
Deterministic,
Latency O (10) us O (100) ps 0 (100) ns

I/O with processor

Ethernet, USB, PCle

PCle, Nvlink

Connectivity to any
data source via
printed circuit board
(PCB)

Low entry level

Low entry level
(programmable with

Some high-level
syntax available,

Ensi . le wi itionall L
ngineering cost (programmable with CUDA, OpenCL, trad.ltlonal y VHD ,
c++, python, etc.) etc.) Verilog (specialized
’ engineer)
Single precision ,
Opti d for fixed
floating point O (10) TFLOPs O (10) TFLOPs primized Jof fixe
point performance
performance
Optimized for serial
Serial / parallel . perfo-rmancej Optimized for Optimized for
increasingly using parallel performance | parallel performance
vector processing
O (10) MB (on the
Memory O (100) GB RAM O (10) GB FPGA itself, not the
PCB)
C tible, t
Compatible, except ompa l &, eXcep .
Backward . i for specific features Not easily backward
- for vector instruction))
compatibility only available on compatible

sets

modern GPUs

17

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/C06010

CHALLENGES WITH HETEROGENEOUS COMPUTING

« Different challenges may arise when exploiting the heterogeneous computing:

1. Instruction sets can produce results which are bit-wise not reproducible
* Check in advance minimum required resolution (integer, floating point, ...)

2. Slow interconnects can cause bandwidth bottlenecks:
* Try to minimize copies between devices

3. Data layout might not be suitable for all devices architectures or memory structures:
* Minimize transformations between data layouts

4. Different compilers and/or programming interfaces:

» Use programming environments for heterogeneous computing

A. Scarabotto - GPU programming

18

EXAMPLES OF GPU USAGE IN RESEARCH

» Trigger at high energy physics experiments

» The LHCb experiment is taking data with fully-software trigger: first-level based on GPUs (HLT1)

« Why trigger? And why GPUs?

A. Scarabotto -

\'n, | \ A
‘ "\. rT:‘:A“ s
[\ \ A A
- =N Pty ‘
e - |
o -
N: =2
| oS o
|\l Gacea® ||\ \ 3
i - e =
= == Bie: Zane
- 4 5 _'ﬂ;fz D\
Ay Iy
I ,/x.‘ T—2J 7-‘[\‘4 i
| _# Y
|27 € |

GPU programming

f
kil

TRIGGER: REAL TIME ANALYSIS

At CERN, the Large Hadron Collider (LHC)
provides the LHCb experiment 40 million
proton-proton beams collisions per
second - 4 TB of data per second

Trigger = filtering and selection of the
events (= beam-beam collisions)

Select decay of particles containing b- and
c- quark, signatures: displaced vertices,
momentum, particle type

Sub-detectors which allow tracking and
particle identification, which needs to be
done “live”: Real-Time Analysis (RTA)

A. Scarabotto - GPU programming

Side View HCAL

ECAL

M4 M5

Magnet SciFi RICH2
Tracker puumnn

By

' /RICHI
fe o UT 4

g T
iE RS real RS T

upgrade

R. Aaij et al 2024 JINST 19 PO5065

20

https://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05065

THE LHCB TRIGGER: GPUS

» Goal: perform the reconstruction for each of the events in the 4 TB/s and reduce it of a factor ~40
reaching 100 GB/s (HLT1)

» Architecture optimised on throughput - GPUs

Huge data load High throughput

Many FLOPS
Parallel problems: pp collisions (event) Highly parallelizible
Within one event: tracks

Small raw event data (~100KB) PCle connection -> limited |I/O
~1000 events fit in GPU memory O(10)GB

A. Scarabotto - GPU programming

21

RECONSTRUCTION ALGORITHM

* How to fully exploit the parallelization power of GPUs?

» Goal: reconstruct tracks traversing the whole LHCb detector, fundamental for triggering

» Parallelization levels:

1. Over events, independent p-p collisions

2. Over input tracks, extrapolate straight tracks in VELO+UT into the magnetic field reaching the SciFi

3. Over hits in SciFi, meaning possible extrapolations segments

VELO

B.-dl ~ 4Tm
ﬂ == — ~ L
..... Pr
UT
T1 T2 T3
ScikF

A. Scarabotto - GPU programming

Max Combinatoric : 32 X 32 x 32

arXiv:2402.14670

22

https://arxiv.org/abs/2402.14670

MACHINE LEARNING

* The training of machine learning (ML) methods require large
amounts of data to handle = high throughput of GPUs

« Many ML methods, for example neural networks, use very
parallelizible methods: matrix multiplication

» Can be trained using reduced precision

 Artificial intelligence (Al) uses neural networks for fast training
and inference from input data

» GPU performance has increased around 7000 times since 2003,
also in terms of price per performance

A. Scarabotto - GPU programming

Median FP32 (Single Precision) Performance (FLOP/s),

2003-22

Source: Epoch and Al Index, 2022 | Chart: 2023 Al Index Report

2.0e+13 2.23e+13
1.0e+13
5.0e+12

@ 2.0e+12
3
D 1.0e+12
o

:lo, 5.0e+11

»

~
a

2.0e+11
9
L 1.0e+
c

©
T 5.0e+10
D

=
2.0e+10
1.0e+10
5.0e+9

2.0e+9

T T v e = e o

NNNNNNN

Figure 2.7.8

Median FP32 (Single Precision) Performance (FLOP/s)
per U.S. Dollar, 2003-22

Source: Epoch and Al Index, 2022 | Chart: 2023 Al Index Report

358 3.59e+10

30B

Median FLOP/s per U.S. Dollar

=

23

https://blogs.nvidia.com/blog/why-gpus-are-great-for-ai/

SUMMARY OF FIRST PART

Heterogeous computing is critical to improve performance and energy efficiency of our code system

Commonly used in our day-by-day life (video/graphics) but also by top computing clusters in the world

Using heterogenous computing in research: General Purpose GPU

GPUs are throughput-optimised processors vs CPU which are latency-optimised

Examples of research applications: high energy physics trigger system, machine learning, ...

A. Scarabotto - GPU programming

24

END OF FIRST PART
ANY QUESTIONS?
BREAK?Y
LET’S DIVE INTO GPU PROGRAMMING

BUR BEFORE..
REGISTER TO THE VISPA CLUSTER:

https://vispa.physik.rwth-aachen.de
Just need username and email

A. Scarabotto - GPU programming

25

https://vispa.physik.rwth-aachen.de/

OVERVIEW

» Section 1: Heterogeneous architectures and their applications

» Section 2: GPU programming

* In Section 2:
« GPU for graphics
« GPU for general purpose
« Composition and parallelization
 Memory layout
« Functions declaration and a first CUDA kernel

» Parallelization in CUDA and memory management

A. Scarabotto - GPU programming

26

1.

GPU AS GRAPHIC PROCESSORS

Step by step of how to produce graphics:

Vertex and index inputs: description of
the iImages using vertices and edges to
triangles

. Vertex shading: calculate the final

position on the screen of each vertex

. Rasterization: get pixel-by-pixel colors

Pixel shading: transform color of the
pixels based on the textures (material,
light, ...). This is usually the most GPU
expensive step

. Rendering: write output to final render

target

Memory

Vertex/index
buffers

Input Assembly

Textures

==

Rasterlzatlon

Early Depth Test

Depth Test

}

J

<

Render Target output

VAN

»
| 4
Y

http://fragmentbuffer.com/gpu-performance-for-game-artists/

27

GRAPHICS REQUIREMENTS

» Graphics pipelines compute a huge amount of simple arithmetics on independent data

« Transforming positions, get pixel colors, apply texture properties, ...
* Hardware-wise:

« Memory should be accessed simultaneously and contiguosly (no need of huge memory capacity)
» Bandwidth and throughput far more important than latency

» Floating-point precision needed

« GPU processors have the perfect requirements!

Modeling

)

Modeling

A. Scarabotto - GPU programming

28

USING GPUS FOR GENERAL PURPOSE

» Starting from around 2000s, with advent of programmable shaders and floating point operation
support, GPU processors became popular also as General Purpose (GPGPU) systems

« \When is it beneficial? Amdahl’s law

« Speedup = 1/(S + P/N)
« S: sequential part
» P: parallel component

* N: number of processors

« One most consider how much of the
algorithmic problem can be parallelized

* Example: if 95% of the algorithm can be
parallelized the gain could be up to 20 times

A. Scarabotto - GPU programming

Speedup

20

18

16

14

12

10

Amdahl's Law

/ Parallel portion
50%
/ 75%
—— 90%
—— 95%

2

5

1
1024
2048
4096
8192
16384
32768
65536

Number of processors

wikipedia

29

https://en.wikipedia.org/wiki/Amdahl%27s_law

GPU COMPOSITION: HARDWARE

* GPU consists in elements which can perform Single Instruction in Multiple Threads (SIMT)

PCle connection

Scalar
Processor

Memory controller

Multiprocessor Cache memory

'

=

A. Scarabotto - GPU programming 30

Device

SISD, MIMD AND SIMT

« SISD: Single Instruction Single Data = Uniprocessors machines

« MIMD: Multiple Instructions Multiple Data = Multi-core or grid processors

* Vectorised instructions, as in modern CPUs

« SIMT: Single Instruction Multiple Threads = GPUs

« Each thread performs the same instruction but on different data

» Synchronization steps are needed

A. Scarabotto - GPU programming

Instructions

Instructions

31

HARDWARE
* Processors (= SIMT cores) are organised in streaming multiprocessors (SM) which compose the GPU

*
*

GPU COMPOSITION

» How does the parallelization work? How is it assigned in the hardware?

* \What kind of memory we have available?

PCle connection

[]

Scalar
Processor

PCI Express 3.0 Host Interface

Memory controller

-
o
-
)
&
o)
e
@)
@©
O

0ooo
0000

Multiprocessor

Device

32

A. Scarabotto - GPU programming

PARALLELIZATION

« The GPU code (kernel) is executed in many
threads

» The total number of threads are split into
blocks (fixed set of threads, generally
maximum of 1024)

» Each thread processes the same instruction,
the kernel, each one on different data

* We can go up to 3 dimensions both in blocks
and threads

A. Scarabotto - GPU programming

[L]]

RN
[

T T

| | Block (0,n) |

I I |

[]]

[| Block (1,n) |

T T T

I I

[[[]1

|| Block (0,0) | Block (0,1) |
I I I I I |
[[T]] [[[]
LT LTI
T T T T T T
| | Block (1,0) | | | Block (1,1) |
L1 1 | L1 1 |
[T[] HENN
T EEEE
Block (m,0) | Block (m,1) |

Thread Thread
(0,0) (0,1)
Thread Thread
(M,0) (M,1)

33

ASSIGNMENT TO STREAMING MULTIPROCESSORS

* Once the kernel is defined, the processes are divided into blocks a scheduled to the streaming
multiprocessors (SM) of the GPU according to resource usage (memory, registers, ...)

* The execution of the blocks is arbitrary

Software Hardware

Kernel grid Device

Block O Block 1

Block 2 Block 3

',: Block O Block 1 Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Block 4 Block 5 Block 6 Block 7

A. Scarabotto - GPU programming

WARPS ASSIGNMENT

« Within a block, threads are processed in warps (= 32 threads in Nvidia GPUs)

* Warps are the smallest entity, meaning block size should be chosen as multiple of 32 (or warp_size)

» This ensures no threads are inherently in idle state

Software

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Hardware
Device
Block O Block 1 Block 2 Block 3
Block 4 Block 5 Block 6 Block 7

Warp 0

Thread 31

Thread O

Warp 1

Thread 63

Thread 32

Warp 2

Thread 96

Thread 64

A. Scarabotto - GPU programming

35

MEMORY LAYOUT AND USAGE

 The GPU has 3 main kind of memory:

1. Global memory: high latency, GBs of space
* Main memory

Grid
« Communication with the CPU (host)

Block (0, 0) Block (1, 0)

DI

Thread (0, 0) Thread (0, 0)

2. Caches: lower latency, KBs of space

« Shared memory: allows communication among threads in
one block

Thread (1, 0) Thread (1, 0)

« Constant memory: read-only memory (only write from
host), used to store constants

Host

3. Registers: lowest latency configurable (usually 255 registers
per thread)

» Accessible only from single thread
» All variables defined are stored in registers

» |f exceded, can result in performance penalty

A. Scarabotto - GPU programming 36

CPU-GPU COMMUNICATION

 The CPU is required to launch the applications as the host
* The host offloads some of the work in the GPU as the device
* The host takes care of the application at all times (stopping, pausing, ...)

» All input data start from the host which populates the global memory and all data must return to the
host when the process is finished

« Once in the global memory, data can be stored in constant, shared memory or registers based on the
need (all their contents are flushed once the kernel function terminates)

Offload computation

Device

Get results

A. Scarabotto - GPU programming

37

GPU PROGRAMMING ENVIRONMENTS

NVIDIA programming interface: CUDA <ANVIDIA.
« Works only with NVIDIA GPUs CUDA

* \Well documented, many tutorial

AMD ROCm (HIP): open source platform
« Support AMD and NVIDIA GPUs

 Newer development, less documentation

OpenCL: framework for heteorgeneous platforms
« CPU, GPU, FPGA, ...

SYCL: C++ heterogeneous platform based on OpenCL

* Intel GPUs / PNz U

A. Scarabotto - GPU programming

38

A FIRST CUDA KERNEL

» Let's have a first look at a simple CUDA kernel:
 |dentifier: __global__
» Indices: blockldx.x and threadldx.x

* No std::cout allowed in the device, using printf

__global__ void hello_world_gpu() {

if (blockIdx.x < 100 && threadIdx.x < 100)
printf("Hello World from the GPU at block %u, thread %u \n", blockIdx.x, threadIdx.x);

A. Scarabotto - GPU programming

39

FUNCTION DECLARATION

* \We have different identifiers which can be used in CUDA:
1. __global__ : function called from host and executed on device
2. __device__: function called from device and executed on device

3. __host__ : function called from host and executed on host

Host Device

__device__

A. Scarabotto - GPU programming

40

INDICES AND PARALLELIZATION

« gridDim.x = 3, number of blocks in the grid

* blockldx.x identifies the current block number

Inside a CUDA kernel, indices help identify single threads

One-dimensional example of 3 blocks with 4 threads each:

e blockDim.x = 4, refers to the number of threads in the block

» threadldx.x identifies the current thread number

gridDim.x = 3

threadldx.x =0

threadldx.x = 1

Example: blockldx.x = 1 and threadldx.x = 2 = data index = 6

thr&dldx.x =2

threadldx.x = 3

0 1 \ 2 3
4 5 6 7
8 9 10 11

blockDim.x = 4

This means that the formula blockldx.x * blockDim.x + threadldx.x uniquely identifies one thread

blockldx.x =0

blockldx.x = 1

blockldx.x = 2
41

INDICES CONFIGURATIONS

Grid and block sizes can be defined up to 3 dimensions, which can help in the parallelization process

This mean we can have x, vy, z:

« gridDim.x, gridDim.y, gridDim.z

» blockldx.x, blockldx.y , blockldx.z

* blockDim.x, blockDim.y, blockDim.z
 threadldx.x, threadldx.y, threadldx.z

The maximum number of threads per block is 1024, which cannot be exceded (multiplication of the 3
dimensions)

The maximum number of blocks varies per hardware, usually 65535 per dimension

A. Scarabotto - GPU programming

42

RUNNING A FIRST CUDA KERNEL

* \We need to define grid size and block size
« dim3 is a CUDA specific variable taking up to 3 input variables defining the sizes in 3 dimensions

- cudaDeviceSynchronize() waits for all requested tasks on device to be finished (here waiting for the
printf to print out values)

dim3 grid_dim(n_blocks); Any parameters to be
dim3 block_dim(n_threads); passed in the kernel can
be added in ()

hello_world_gpu<<<grid_dim, block_dim>>>();

cudaDeviceSynchronize();

A. Scarabotto - GPU programming

43

SYNCHRONIZATION

« The execution of blocks and threads is arbitrary 11 1T T
|| Block (0,00 _| || Block (0,1) _}| e | Block (0,n) _|
- |f we want to ensure all work has finished, synchronization is needed EEEE EEEE EEEE
N [T NN
* |t can be done at grid‘ aﬂd blOCk—level: | |Block (1,00 | []Block (1,1) | [| Block (1,n) |
, i _ _ 11 EENN EEEE
« cudaDeviceSynchronize() waits for all work on the device to be
finished, meaning all blocks and also memory copies
. [] ! [[]] LTI
« _ syncthreads() waits for all threads inside one block to finish their ok mor | ek er [stock (mm]

| I I | I

work, can be written within the kernel code (for example when ‘ S —

having 2 consecutive loops)

. . . . Thread Thread e Thread
for (int i = threadldx.x; 1 < N+1; 1i++) A (0,0) ©0,1) (O.N)

variable [threadldx.x] = ...
}

Thread Thread e Thread
syncthreads () ; (M,0) (M,1) (MN)

for (int i = threadldx.x; i < N+1; i++) {
Use variable[threadIldx.x]
}

A. Scarabotto - GPU programming

FOR LOOP AND PARALLELIZATION: EXAMPLE

« Example: writing an vector addition kernel, with x, y and z of size N

X 1 4 7 2 3 1
+

Y, 2 0 2 6 4 2

Z 3 4 9 8 7 3

 How yould you do it in CPU?

void vector_addition_cpu(int *X, int xY, int *Z, int N) {
for (int 1 = 0; 1 < N; i++) {

Zli] = X[i] + YI[i];

}

A. Scarabotto - GPU programming

FOR LOOP AND PARALLELIZATION: EXAMPLE

* Running on a single block using size N as number of threads

» Making the loop in this way forces the block dimension to be N, otherwise we lead to incorrect results

or out bounds accesses—-> how to avoid this?

__global__ void vector_addition_gpu(int *xX, int xY, int *Z) {
const int i = threadIdx.Xx;
Z[i] = X[i] + YI[i];

}

int main(){

vector_addition_gpu<<<l, N>>>(X, Y, Z);

A. Scarabotto - GPU programming

Index value different
for each of the N
threads in the block

Grid dimension 1 and
block dimension N

46

FOR LOOP AND PARALLELIZATION: EXAMPLE

* Making a block-dimension strided loop: block-dimension can be any number n
» Stride = blockDim.x = n
* |f n >= N: the loop will be the same as previous slide
* |f n < N: some or all threads will make more than 1 iteration

global__ void vector_addition_gpu(int *xX, int xY, int *Z, int N) {
for (int i = threadIdx.x; i < N; i += blockDim.x) {
Zli] = X[i] + YI[i];

Block-dimension
strided

Grid dimension 1 and
block dimension n

vector_addition_gpu<<<l, n>>>(X, Y, Z, N);

A. Scarabotto - GPU programming

47

FOR LOOP AND PARALLELIZATION: EXAMPLE

» Making a block-dimension strided loop: block-dimension can be any number n

for (int i = threadIdx.x; i < N; i += blockDim.x) {
Zii] = X|1] + YI|[1];

« Example: N =6
e |fn =8, first 6 go in each thread, last 2 do not satisfy i < N in loop

* |f n =blockDim.x = 4, first 4 go in first iteration of the loop (4 threads), then 2 calculation go in
second iteration i1+= blockDim.x

global__ void vector_addition_gpu(int %X, int xY, int %Z, int N) {

for (int i = threadIdx.x; i < N; i += blockDim.x) {

Z[i] = X[l + Y[il; 0 1 2 3 4
}

}

int main(){

vector_addition_gpu<<<l, n>>>(X, Y, Z, N);

A. Scarabotto - GPU programming

48

FOR LOOP AND PARALLELIZATION: EXAMPLE

» Making a grid- and block-dimension strided loop: with grid-dimension m and block-dimension n
« Stride = blockDim.x * gridDim.x
« Start = threadldx.x + blockldx.x * blockDim.x

 |terating in this way in all threads across all blocks, profiting from maximum parallelization

__global__ void vector_addition_gpu(int *X, int %Y, int xZ, int N) {
for (int i = threadIdx.x + blockIdx.x * blockDim.x; i < N; i += blockDim.x % gridDim.x) {
Z[i] = X[i] + YI[i];
¥
}

| . Grid dimension m and
int main(){ ' block dimension n

vector_addition_gpu<<<m, n>>>(X, Y, Z, N);

A. Scarabotto - GPU programming 49

GLOBAL MEMORY MANAGEMENT

» Vector addition example, how to handle memory for our vectors from host to device?

int main(){
int *xx_d, *xy_d, *z_d;

cudaMalloc((voidkx)&x_d, size % sizeof(
cudaMalloc((voidxx)&y_d, size x sizeof
cudaMalloc((voidkx)&x_d, size % sizeof(

cudaMemcpy(x_d, X, size x
cudaMemcpy(y_d, Y, size %
cudaMemcpy(z_d, Z, size x

sizeof

sizeof!

(int)
int)

sizeof (i

vector_addition_gpu<<<m, n>>>(X,

cudaDeviceSynchronize();
cudaMemcpy(Z, z_d, size *
cudaFree(x_d);

cudaFree(y_d);
cudaFree(z_d);

A. Scarabotto - GPU programming

sizeof (i

’

int)
int)
int)
cudaMemcpyHostToDevice);
cudaMemcpyHostToDevice);

cudaMemcpyHostToDevice);

N);

cudaMemcpyDeviceToHost

Allocate global memory in device of
size N with cudaMalloc

Populate global memory with data
using cudaMemcpy:
cudaMemcpyHostToDevice

Run kernel
Synchronize after kernel completion

Read inputs back in host:
cudaMemcpyDeviceToHost

Pointer to global memory to be freed
with cudaFree

50

A WORD ON SHARED MEMORY

* |tis useful to define allocate shared memory from the kernel for much faster data usage, knowing its
limited size

* |f its size Is known In advance, it is better to allocate the correct size:
« _ shared__ float variable_sh[NI;

» Otherwise shared memory could also be allocated dynamically, but size must be known in the host by
passing an additional argument in the kernel call
« _ shared__ float variable_sh[];

 kernel _name<<m,n, N * sizeof(float)>>();

A. Scarabotto - GPU programming

51

ATOMIC OPERATIONS AND RACE CONDITIONS

* We need to be cautious when modifying a value in memory and reading it again in different threads:
* Timing of threads can be different

* Three main operations: read, modify and write
» Use atomic operations:

 Makes the read-write-modify as a single operation = cannot be interrupted
« atomicAdd(), atomicSub), ...

» Usual use-cases: counting elements, searching elements in array, histogramming, ...

A. Scarabotto - GPU programming

52

SATURATING GPU: DEBUGGING

seed_x seed_xz(seed_xz::Parameters, const char %) (500, 1, 1)x(128, 1, 1), Context 1, Stream 13, Device @, CC 8.6

* \We need to avoid saturating shared memory (O(KBs) and =~ Zrmmmsm e

Metric Name Metric Unit Metric Value

. . DRAM Frequency cycle/nsecond 7.58
registers (255 per thread max) which can cause loss of o
g p Elapsed Cycles cycle 4,092,774
Memory Throughput % 9.86

DRAM Throughput % 1.40

Duration msecond 3.50

per Orl I la nce L1/TEX Cache Throughput % 26.88
L2 Cache Throughput % 6.06

SM Active Cycles cycle 1,501,520.95

Compute (SM) Throughput % 9.86

e Several ways to debug and prof Ile (dynamic program VN This kernel exhibits Low conpute throughput and memcry bandwidth utilization relative to the pesk performance

of this device. Achieved compute throughput and/or memory bandwidth below 60.0% of peak typically indicate
latency issues. Look at Scheduler Statistics and Warp State Statistics for potential reasons.

analysis) GPU code:

Metric Name Metric Unit Metric Value

. . . Block Size 128

('Y nvp rof = p rofl | er b u I |'t_| n C U DA Function Cache Configuration CachePreferNone
. Grid Size 500

Registers Per Thread register/thread 118

Shared Memory Configuration Size Kbyte 65.54

. Driver Shared Memory Per Block Kbyte/block 1.02

° C d - . | f Dynamic Shared Memory Per Block byte/block)
u a g o COI I II I lan Ine e ugger ase O g Static Shared Memory Per Block Kbyte/block 7.22

Threads thread 64,000

Waves Per SM 1.95

* Nvidia nsight (ncu): debugger and profiler Implemented s e or e saces 1 srines 2 ene sainun smmse o snaces e con v avscues 0 paraner on e

target GPU. The number of blocks in a wave depends on the number of multiprocessors and the theoretical
occupancy of the kernel. This kernel launch results in 1 full waves and a partial wave of 244 thread blocks.
. . Under the assumption of a uniform execution duration of all thread blocks, the partial wave may account for
In \/S Code a nd Usable from Com ma nd ||ne up to 50.0% of the total kernel runtime with a lower occupancy of 36.3%. Try launching a grid with no
partial wave. The overall impact of this tail effect also lessens with the number of full waves executed for
a grid. See the Hardware Model
(https://docs.nvidia.com/nsight-compute/ProfilingGuide/index.html#metrics—hw-model) description for more
details on launch configurations.

* nsys: command line profiler which produce analytics

Metric Name Metric Unit Metric Value
Block Limit SM block 16
Block Limit Registers block 4
Block Limit Shared Mem block 7
Block Limit Warps block 12
Theoretical Active Warps per SM warp 16
Theoretical Occupancy % 33.33
Achieved Occupancy % 21.23
Achieved Active Warps Per SM warp 10.19

WRN This kernel's theoretical occupancy (33.3%) is limited by the number of required registers. The difference
between calculated theoretical (33.3%) and measured achieved occupancy (21.2%) can be the result of warp
scheduling overheads or workload imbalances during the kernel execution. Load imbalances can occur between
warps within a block as well as across blocks of the same kernel. See the CUDA Best Practices Guide
(https://docs.nvidia.com/cuda/cuda-c-best-practices—guide/index.html#occupancy) for more details on
optimizing occupancy.

A. Scarabotto - GPU programming 53

OTHER EXAMPLE: MATRIX MULTIPLICATION

* \We quickly introduce tiling and coalasced memory accesses

123x78_ 58
4 5 & 9 10| =

11 12

A. Scarabotto - GPU programming

54

TILING

« Tiled data processing: dividing large datasets into many tiles which are processed at one time

|t is useful when data have similar patterns, such that threads can access memory in a tiled way

» Typical tiled-process:
1. Load tile from global to shared memory
2. Synchronize
3. Multiple threads access the data in shared memory
4. Synchronize

5. Move to the next tile

« Example: multiply two arrays of any given size by dividing it into tiles

A. Scarabotto - GPU programming

55

COALESCED MEMORY ACCESS

Burst section Burst section Burst section Burst section

O 112 34 56 |7 89 10/11/12/13/14/15

Global memory is organized into bursts sections, each cell representing a byte

If threads make a memory request under the same burst section, the access is coalesced

Non-coalesced memory access can significantly affect performance

Advice:

« Access index to an array X should have a part depedent and indendent of threadldx.x

« Example: X[x0 + threadldx.x] with x0 independent of thread index

A. Scarabotto - GPU programming

OTHER EXAMPLE: MATRIX MULTIPLICATION
X00 | X01 | X02

X10 [X11 [X12 > | X00 [XO01 [X02 [X10 [X11 ([X12 |[X20 |X21 |X22

X20 | X21 | X22

» Advice: always store higher order arrays into 1D array

» Matrix multiplication becomes a 1D array multiplication:

e Xofsizemxn

/7 8
Y of sizenxk 1 2 3 x| 9 10| = 28
. . 4 5 6 -
 Resultis Z of size m x k

11 12

A. Scarabotto - GPU programming

OTHER EXAMPLE: MATRIX MULTIPLICATION

» Matrix multiplication becomes a 1D array multiplication:

« Xofsizemxn X00 |[X01 [X02 [X10 |X11 [X12 [X20 |X21 |X22

Y of sizenxk

YOO |YO1 [YO2 |Y10 |Y11 |Y12 |Y20 |Y21 |Y22

 Resultis Z of size m x k

* With this method access to Y are coalesced while X accesses are not

* This can be improved using shared memory

__global__ void multiply_matrices(const float %X, const float xY, float xZ, int m, int n, int k) {
for (int row = threadIdx.x; row < n; row += blockDim.x) {
for (int col = threadIdx.y; col < k; col += blockDim.y) {
float element = 0.f;
for (int 1 = @0; i < n; i++) {

element += X[row *x m + il x Y[i * k + coll;

}

Zlrow % size + col] = element;

A. Scarabotto - GPU programming

OTHER EXAMPLE: MATRIX MULTIPLICATION

* This can be improved using shared memory, by preloading all elements of X and Y
* Only using coalesced accesses as all threads can access shared memory

« Example on how to load shared memory and using function of the previous slide to do 16 x 16 matrix
multiplication

__global__ void shared_matrix_multiply_16_16(floatx X, floatx Y, floatx Z) {
__shared__ float shared_X [256];
__shared__ float shared Y [256];
// Coalesced loads
for (int i = threadIdx.x; i < 256; i += blockDim.Xx)
shared_X[i] = X[i];

for (int i = threadIdx.x; i < 256; i += blockDim.x)
shared_Y[i] = Y[i];
__syncthreads();

{ / \low <hared X and <shared Y are ASted and ca
/| l Ow Slidlcud A allud Slial cl adl C l_‘ Op U I ated and cCal
'/ 1nstead of the original arrays to perform the multiplicatio

multiply_arrays(shared_X , shared. Y , Z, 16, 16, 16);

A. Scarabotto - GPU programming

59

STREAM AND PIPELINES

A stream is a sequence of commands to be executed in order, example, kernel invocations, memory
transmissions and allocations, synchronizations, ...

» Any Instructions run in a stream must complete before the next instruction is issued

« CUDA uses a default stream

* Non-default stream can be defined, but the default one will always have priority

» GPUs can actually perform in this way data transmissions while executing kernels = pipeline

» Typical pipeline with 3 streams:
 Use SMs to perform computations
» Transfer data from host to device

» Transfer data from device to host (using cudaMemcpyAsync to transfer data asynchrounsly in a
non-default stream)

A. Scarabotto - GPU programming

60

SUMMARY

« Starting from year ~2000, GPUs were starting to be used for general purpose

* |tis important to understand how and how much of our algorithm can be parallelized
« GPUs are single instruction multiple threads (SIMT) devices

» Parallelization organised in blocks and threads

 The CPU-GPU communication is fundamental as the CPU is in charge of all time of the process and
can offload some work to the GPU

* |tis important to know and understand the memory layout of a GPU to achieve the best performance
and use them in the best way

A. Scarabotto - GPU programming

61

RESOURCES USED IN THIS TALK

 Most of what | learned comes from Dorothea vom Bruch (physics researcher at CPPM in Marseille) and
Daniel Campora (now Nvidia engineer)

» They do also amazing lectures, from which | took all the inspiration: tCSC2023 and tSCS52024

 \Where to find material:

» https://docs.nvidia.com/cuda/cuda-c-programming-guide

 D. B. Kirk, W. w. Hwu: “Programming Massively Parallel Processors”
« J. Sanders, E. Kandrot: “CUDA by Example: An Introduction to General-Purpose GPU Programming”
 N. Wilt: “The CUDA Handbook: A Comprehensive Guide to GPU Programming”

A. Scarabotto - GPU programming

62

https://indico.cern.ch/event/1244566/overview
https://indico.cern.ch/event/1377435/
https://docs.nvidia.com/cuda/cuda-c-programming-guide

