
H E T E RO G E N E O U S C O M P U T I N G :

G P U P RO G R A M M I N G
Alessandro Scarabotto

TU Dortmund, Germany
Email: alessandro.scarabotto@cern.ch

Fast and Efficient Python Programming School
August 2024

Aachen, Germany

mailto:alessandro.scarabotto@cern.ch

I N T R O D U C T I O N

• Bachelor in Physics at Ferrara University (2015-2018)

• Master degree in Physics: double degree Ferrara –
Paris Sud (2018-2020)

• PhD in Paris in particle physics working for the LHCb
experiment (2020-2023)

• Postdoctoral researcher at TU Dortmund for the
LHCb group working on (2023-):

• Data analysis of beauty and charm decays

• LHCb trigger system: reconstruction algorithms

A. Scarabotto - GPU programming 2

O V E RV I E W

• Section 1: Heterogeneous architectures and their applications

• Section 2: GPU programming

• In Section 1:

• What does heterogeneous mean?

• Hardware accelerators

• Multi-core vs many cores

• Intro to Graphic Processing Units (GPU)

• Comparison to other accelerators

• Examples of GPU using in research

A. Scarabotto - GPU programming 3

H E T E R O G E N E O U S ?

• Systems which can use multiple types of computing cores or processors based on different computer
architectures:

• Central Processing Units (CPUs)

• Graphic Processing Units (GPUs)

• Application-Specific Integrated Circuits (ASICs)

• Field Programmable Gate Arrays (FPGAs)

• Neural Processing Units (NPUs)

• Tensor Processing Units (TPUs)

• Different processors specialized for specific purposes

• Goal is to optimise computing performance and energy efficiency

A. Scarabotto - GPU programming 4

C O M P U T I N G P E R F O R M A N C E

• Increasing performance as a function of time not sustaible as a function of price (exponential budget)

• Example showing ATLAS experiment CPU requirements at CERN

• Assuming a constant budget per year, only-CPU model is not sustainable

• Must exploit the ”power” of heterogeneous systems in scientific applications

5Courtesy Dr. Bernd Panzer-Steindel (CERN/IT, CTO)
J. Eschle et al. Computing and Software for Big Science, Vol7, A10

https://link.springer.com/article/10.1007/s41781-023-00104-x

E N E R G Y E F F I C I E N C Y

• More and more important to reduce
electricity consumptions and environmental
impacts

• Giving power to processors could be more
expensive than buying them

• Heterogeneous computing can help
improving energy efficiency

• We need to be careful of the definition of
“power consumption” as many factors
come into play (power delivered, cooling
systems, average vs peak consumption, …)

A. Scarabotto - GPU programming 6

Heterogeneous energy consumption comparison

https://blogs.nvidia.com/blog/gpu-energy-efficiency-nersc/

H E T E R O G E N E O U S S Y S T E M S

• Common in our daily life: video encoding and editing, graphics rendering, …

A. Scarabotto - GPU programming 7

GPU accelerated rendering

https://helpx.adobe.com/in/premiere-elements/using/gpu-acceleration.html

H E T E R O G E N E O U S S Y S T E M S

• Common in our daily life

• Used also by the top data centers in the world in many different areas

• You can take a tour in top500.org showing the top500 computing systems in the world

• Most of them use NVIDIA or AMD GPU accelerators showing the need of heterogeneous systems for
top performance

A. Scarabotto - GPU programming 8C. Feng at al. (2015). arXiv:1208.4247

Multi-core vs many cores?

https://www.top500.org/statistics/overtime/
https://arxiv.org/abs/1208.4247

H E T E R O G E N E O U S S Y S T E M S

A. Scarabotto - GPU programming 9

https://www.top500.org/statistics/overtime/

• Also most of the data
centers in the GREEN500 list
use accelerators

https://www.top500.org/statistics/overtime/
https://www.top500.org/lists/green500/2024/06/

H A R D WA R E A C C E L E R A T O R S I N R E S E A R C H

A. Scarabotto - GPU programming 10

Graphic Processing Units (GPUs)
Vendors: NVIDIA, AMD, Intel

Field Programmable Gate Arrays (FPGAs)
Vendors: Xilinx, Altera

Neural Processing Units (NPUs)
Vendors: AMD, Intel, …
Processor specialised in AI and ML

Tensor Processing Units (TPUs)
Vendor: Google
ASIC specialised in NN machine learning

• Tradeoffs between flexibility and single-task optimised performance

M U LT I - C O R E V S M A N Y C O R E S

A. Scarabotto - GPU programming 11

Multi-core CPU

• O(10) cores

• Flexibility of sequential and parallel code
programming

• Large caches (fast memory storage)

• Focused on single-thread high performace

GPU with many cores

• O(1000) cores

• Designed for parallel code programming

• Small caches

• Focused on operation of simpler calculations
per single-thread

W O R K L O A D : M U LT I - C O R E V S M A N Y C O R E S

A. Scarabotto - GPU programming 12

Multi-core CPU

• Typically the main processor

• Best sequential performance

• Multi-threading optimisation needed in
parallelizable problems

GPU with many cores

• Usually paired with a CPU

• Algorithms optimised to profit from the
many cores of the accelerator

• Only highly parallelizable problems

G R A P H I C P R O C E S S I N G U N I T (G P U)

• GPU were first developed for
graphics pipelines only

• Now general purpose processors
(often used for AI applications)

• Programmed with high-level
language

• Usually, CPU is the main processor
with GPU as accelerator

• PCIe connection allows high
throughput (up to 16 GB/s per lane)

A. Scarabotto - GPU programming 13

PLOS ONE 8(5): e62789

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062789

H E T E R O G E N E O U S S Y S T E M

• CPU core, latency optimised (= low
delay in transferring data):

• Low number of cores

• Complex control units

• Large caches

• GPU accelerators, throughput
optmised (= high faction of data
trasferred simultaneously):

• High number of cores

• No complex control units

• Small caches

A. Scarabotto - GPU programming 14

PLOS ONE 8(5): e62789

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0062789

G P U V S C P U : S P E C I F I C A T I O N S E X A M P L E

Core
count

Bandwid
th

Peak Compute
performance

Frequency Memory
capacity

Transistor
count

Price

CPU
AMD
Ryzen 5
5600G

6 48 GB/s 1.7 TFLOPS 3900 MHz 64 GB 10.7 M 260 $

GPU
NVIDIA
RTX 3090

10496 936
GB/s

35.5 TFLOPS
(single
precision)

1395 MHz 24 GB 28.3 M 1500 $

A. Scarabotto - GPU programming 15

• GPUs provide higher data transfer speed (bandwidth), meaning also a higher number of floating points
operations per second (FLOPS)

• CPUs compute more instructions per second (frequency) exploiting a larger memory capacity

https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/cpu-specs/ryzen-5-5600g.c2471
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622
https://www.techpowerup.com/gpu-specs/geforce-rtx-3090.c3622

F I E L D P R O G R A M M A B L E G A T E A R R A Y S (F P G A)

• Thousands of logic blocks connected via programmable interconnect

• Hardware implementation of an algorithm

• Advantages:

• Fast integer computations (low latency)

• Does not require a CPU (any data source)

• High bandwidth

• Disadvantages:

• Medium floating point operations performance

• High engineering cost

• Not easy backward compatibility with other processors types

A. Scarabotto - GPU programming 16

National Instruments

https://www.ni.com/en/shop/electronic-test-instrumentation/add-ons-for-electronic-test-and-instrumentation/what-is-labview-fpga-module/fpga-fundamentals.html

A C C E L E R A T O R S C O M PA R I S O N

17JINST 15 C06010 (2020)

https://iopscience.iop.org/article/10.1088/1748-0221/15/06/C06010

C H A L L E N G E S W I T H H E T E R O G E N E O U S C O M P U T I N G

• Different challenges may arise when exploiting the heterogeneous computing:

1. Instruction sets can produce results which are bit-wise not reproducible

• Check in advance minimum required resolution (integer, floating point, …)

2. Slow interconnects can cause bandwidth bottlenecks:

• Try to minimize copies between devices

3. Data layout might not be suitable for all devices architectures or memory structures:

• Minimize transformations between data layouts

4. Different compilers and/or programming interfaces:

• Use programming environments for heterogeneous computing

A. Scarabotto - GPU programming 18

E X A M P L E S O F G P U U S A G E I N R E S E A R C H

• Trigger at high energy physics experiments

• The LHCb experiment is taking data with fully-software trigger: first-level based on GPUs (HLT1)

• Why trigger? And why GPUs?

A. Scarabotto - GPU programming 19

T R I G G E R : R E A L T I M E A N A LY S I S

• At CERN, the Large Hadron Collider (LHC)
provides the LHCb experiment 40 million
proton-proton beams collisions per
second à 4 TB of data per second

• Trigger = filtering and selection of the
events (= beam-beam collisions)

• Select decay of particles containing b- and
c- quark, signatures: displaced vertices,
momentum, particle type

• Sub-detectors which allow tracking and
particle identification, which needs to be
done “live”: Real-Time Analysis (RTA)

A. Scarabotto - GPU programming 20

R. Aaij et al 2024 JINST 19 P05065

https://iopscience.iop.org/article/10.1088/1748-0221/19/05/P05065

T H E L H C B T R I G G E R : G P U S

• Goal: perform the reconstruction for each of the events in the 4 TB/s and reduce it of a factor ~40
reaching 100 GB/s (HLT1)

• Architecture optimised on throughput à GPUs

A. Scarabotto - GPU programming 21

The LHCb trigger GPUs

Huge data load High throughput
Many FLOPS

Parallel problems: pp collisions (event)
Within one event: tracks

Highly parallelizible

Small raw event data (~100KB) PCIe connection -> limited I/O
~1000 events fit in GPU memory O(10)GB

R E C O N S T RU C T I O N A L G O R I T H M

• How to fully exploit the parallelization power of GPUs?

• Goal: reconstruct tracks traversing the whole LHCb detector, fundamental for triggering

• Parallelization levels:

1. Over events, independent p-p collisions

2. Over input tracks, extrapolate straight tracks in VELO+UT into the magnetic field reaching the SciFi

3. Over hits in SciFi, meaning possible extrapolations segments

A. Scarabotto - GPU programming 22

arXiv:2402.14670

https://arxiv.org/abs/2402.14670

M A C H I N E L E A R N I N G

• The training of machine learning (ML) methods require large
amounts of data to handle à high throughput of GPUs

• Many ML methods, for example neural networks, use very
parallelizible methods: matrix multiplication

• Can be trained using reduced precision

• Artificial intelligence (AI) uses neural networks for fast training
and inference from input data

• GPU performance has increased around 7000 times since 2003,
also in terms of price per performance

A. Scarabotto - GPU programming 23GPUs for AI

https://blogs.nvidia.com/blog/why-gpus-are-great-for-ai/

S U M M A R Y O F F I R S T PA R T

• Heterogeous computing is critical to improve performance and energy efficiency of our code system

• Commonly used in our day-by-day life (video/graphics) but also by top computing clusters in the world

• Using heterogenous computing in research: General Purpose GPU

• GPUs are throughput-optimised processors vs CPU which are latency-optimised

• Examples of research applications: high energy physics trigger system, machine learning, …

A. Scarabotto - GPU programming 24

E N D O F F I R S T PA R T

A N Y Q U E S T I O N S ?

B R E A K ?

L E T ’ S D I V E I N T O G P U P R O G R A M M I N G

B U R B E F O R E …

R E G I S T E R T O T H E V I S PA C L U S T E R :

A. Scarabotto - GPU programming 25

https://vispa.physik.rwth-aachen.de

Just need username and email

https://vispa.physik.rwth-aachen.de/

O V E RV I E W

• Section 1: Heterogeneous architectures and their applications

• Section 2: GPU programming

• In Section 2:

• GPU for graphics

• GPU for general purpose

• Composition and parallelization

• Memory layout

• Functions declaration and a first CUDA kernel

• Parallelization in CUDA and memory management

A. Scarabotto - GPU programming 26

G P U A S G R A P H I C P R O C E S S O R S

Step by step of how to produce graphics:

1. Vertex and index inputs: description of
the images using vertices and edges to
triangles

2. Vertex shading: calculate the final
position on the screen of each vertex

3. Rasterization: get pixel-by-pixel colors

4. Pixel shading: transform color of the
pixels based on the textures (material,
light, …). This is usually the most GPU
expensive step

5. Rendering: write output to final render
target

27
http://fragmentbuffer.com/gpu-performance-for-game-artists/

G R A P H I C S R E Q U I R E M E N T S
• Graphics pipelines compute a huge amount of simple arithmetics on independent data

• Transforming positions, get pixel colors, apply texture properties, …

• Hardware-wise:

• Memory should be accessed simultaneously and contiguosly (no need of huge memory capacity)

• Bandwidth and throughput far more important than latency

• Floating-point precision needed

• GPU processors have the perfect requirements!

A. Scarabotto - GPU programming 28

U S I N G G P U S F O R G E N E R A L P U R P O S E

• Starting from around 2000s, with advent of programmable shaders and floating point operation
support, GPU processors became popular also as General Purpose (GPGPU) systems

• When is it beneficial? Amdahl’s law

• Speedup = 1/(S + P/N)

• S: sequential part

• P: parallel component

• N: number of processors

• One most consider how much of the
algorithmic problem can be parallelized

• Example: if 95% of the algorithm can be
parallelized the gain could be up to 20 times

A. Scarabotto - GPU programming 29wikipedia

https://en.wikipedia.org/wiki/Amdahl%27s_law

G P U C O M P O S I T I O N : H A R D WA R E
• GPU consists in elements which can perform Single Instruction in Multiple Threads (SIMT)

A. Scarabotto - GPU programming 30

PCIe connection

Memory controller

Cache memory

S I S D , M I M D A N D S I M T

• SISD: Single Instruction Single Data à Uniprocessors machines

• MIMD: Multiple Instructions Multiple Data à Multi-core or grid processors

• Vectorised instructions, as in modern CPUs

• SIMT: Single Instruction Multiple Threads à GPUs

• Each thread performs the same instruction but on different data

• Synchronization steps are needed

A. Scarabotto - GPU programming 31

G P U C O M P O S I T I O N : H A R D WA R E
• Processors (= SIMT cores) are organised in streaming multiprocessors (SM) which compose the GPU

• How does the parallelization work? How is it assigned in the hardware?

• What kind of memory we have available?

A. Scarabotto - GPU programming 32

PCIe connection

Memory controller

Cache memory

PA R A L L E L I Z A T I O N

• The GPU code (kernel) is executed in many
threads

• The total number of threads are split into
blocks (fixed set of threads, generally
maximum of 1024)

• Each thread processes the same instruction,
the kernel, each one on different data

• We can go up to 3 dimensions both in blocks
and threads

A. Scarabotto - GPU programming 33

A S S I G N M E N T T O S T R E A M I N G M U LT I P R O C E S S O R S

• Once the kernel is defined, the processes are divided into blocks a scheduled to the streaming
multiprocessors (SM) of the GPU according to resource usage (memory, registers, …)

• The execution of the blocks is arbitrary

A. Scarabotto - GPU programming 34

WA R P S A S S I G N M E N T

• Within a block, threads are processed in warps (= 32 threads in Nvidia GPUs)

• Warps are the smallest entity, meaning block size should be chosen as multiple of 32 (or warp_size)

• This ensures no threads are inherently in idle state

A. Scarabotto - GPU programming 35

M E M O R Y L A Y O U T A N D U S A G E
• The GPU has 3 main kind of memory:

1. Global memory: high latency, GBs of space

• Main memory

• Communication with the CPU (host)

2. Caches: lower latency, KBs of space

• Shared memory: allows communication among threads in
one block

• Constant memory: read-only memory (only write from
host), used to store constants

3. Registers: lowest latency configurable (usually 255 registers
per thread)

• Accessible only from single thread

• All variables defined are stored in registers

• If exceded, can result in performance penalty

A. Scarabotto - GPU programming 36

C P U - G P U C O M M U N I C A T I O N

• The CPU is required to launch the applications as the host

• The host offloads some of the work in the GPU as the device

• The host takes care of the application at all times (stopping, pausing, …)

• All input data start from the host which populates the global memory and all data must return to the
host when the process is finished

• Once in the global memory, data can be stored in constant, shared memory or registers based on the
need (all their contents are flushed once the kernel function terminates)

A. Scarabotto - GPU programming 37

G P U P R O G R A M M I N G E N V I R O N M E N T S

• NVIDIA programming interface: CUDA

• Works only with NVIDIA GPUs

• Well documented, many tutorial

• AMD ROCm (HIP): open source platform

• Support AMD and NVIDIA GPUs

• Newer development, less documentation

• OpenCL: framework for heteorgeneous platforms

• CPU, GPU, FPGA, …

• SYCL: C++ heterogeneous platform based on OpenCL

• Intel GPUs

A. Scarabotto - GPU programming 38

A F I R S T C U D A K E R N E L

• Let’s have a first look at a simple CUDA kernel:

• Identifier: __global__

• Indices: blockIdx.x and threadIdx.x

• No std::cout allowed in the device, using printf

A. Scarabotto - GPU programming 39

F U N C T I O N D E C L A R A T I O N

• We have different identifiers which can be used in CUDA:

1. __global__ : function called from host and executed on device

2. __device__: function called from device and executed on device

3. __host__ : function called from host and executed on host

A. Scarabotto - GPU programming 40

I N D I C E S A N D PA R A L L E L I Z A T I O N

• Inside a CUDA kernel, indices help identify single threads

• One-dimensional example of 3 blocks with 4 threads each:

• gridDim.x = 3, number of blocks in the grid

• blockIdx.x identifies the current block number

• blockDim.x = 4, refers to the number of threads in the block

• threadIdx.x identifies the current thread number

• This means that the formula blockIdx.x * blockDim.x + threadIdx.x uniquely identifies one thread

• Example: blockIdx.x = 1 and threadIdx.x = 2 à data index = 6

41

0 1 2 3

4 5 6 7

8 9 10 11

gridDim.x = 3

blockDim.x = 4

blockIdx.x = 0

blockIdx.x = 1
blockIdx.x = 2

threadIdx.x = 0 threadIdx.x = 1 threadIdx.x = 2 threadIdx.x = 3

I N D I C E S C O N F I G U R A T I O N S

• Grid and block sizes can be defined up to 3 dimensions, which can help in the parallelization process

• This mean we can have x, y, z:

• gridDim.x, gridDim.y, gridDim.z

• blockIdx.x, blockIdx.y , blockIdx.z

• blockDim.x, blockDim.y, blockDim.z

• threadIdx.x, threadIdx.y, threadIdx.z

• The maximum number of threads per block is 1024, which cannot be exceded (multiplication of the 3
dimensions)

• The maximum number of blocks varies per hardware, usually 65535 per dimension

A. Scarabotto - GPU programming 42

RU N N I N G A F I R S T C U D A K E R N E L

• We need to define grid size and block size

• dim3 is a CUDA specific variable taking up to 3 input variables defining the sizes in 3 dimensions

• cudaDeviceSynchronize() waits for all requested tasks on device to be finished (here waiting for the
printf to print out values)

A. Scarabotto - GPU programming 43

Any parameters to be
passed in the kernel can
be added in ()

S Y N C H R O N I Z A T I O N

• The execution of blocks and threads is arbitrary

• If we want to ensure all work has finished, synchronization is needed

• It can be done at grid- and block-level:

• cudaDeviceSynchronize() waits for all work on the device to be
finished, meaning all blocks and also memory copies

• __syncthreads() waits for all threads inside one block to finish their
work, can be written within the kernel code (for example when
having 2 consecutive loops)

A. Scarabotto - GPU programming 44

F O R L O O P A N D P A R A L L E L I Z A T I O N : E X A M P L E

• Example: writing an vector addition kernel, with x, y and z of size N

A. Scarabotto - GPU programming 45

1 4 7 2 3 1

2 0 2 6 4 2

3 4 9 8 7 3

+

=

x

y

z
• How yould you do it in CPU?

F O R L O O P A N D P A R A L L E L I Z A T I O N : E X A M P L E

A. Scarabotto - GPU programming 46

• Running on a single block using size N as number of threads

• Making the loop in this way forces the block dimension to be N, otherwise we lead to incorrect results
or out bounds accessesà how to avoid this?

Grid dimension 1 and
block dimension N

Index value different
for each of the N
threads in the block

F O R L O O P A N D P A R A L L E L I Z A T I O N : E X A M P L E

A. Scarabotto - GPU programming 47

• Making a block-dimension strided loop: block-dimension can be any number n

• Stride = blockDim.x = n
• If n >= N: the loop will be the same as previous slide
• If n < N: some or all threads will make more than 1 iteration

Grid dimension 1 and
block dimension n

Block-dimension
strided

F O R L O O P A N D P A R A L L E L I Z A T I O N : E X A M P L E

A. Scarabotto - GPU programming 48

• Making a block-dimension strided loop: block-dimension can be any number n

• Stride = blockDim.x = n

• If n >= N: the loop will be the same as previous slide

• If n < N: some or all threads will make more than 1 iteration

• Example: N = 6

• If n = 8, first 6 go in each thread, last 2 do not satisfy i < N in loop

• If n = blockDim.x = 4, first 4 go in first iteration of the loop (4 threads), then 2 calculation go in
second iteration i+= blockDim.x

1 4 7 2 3 1x
0 1 2 3 4 5

F O R L O O P A N D P A R A L L E L I Z A T I O N : E X A M P L E

A. Scarabotto - GPU programming 49

• Making a grid- and block-dimension strided loop: with grid-dimension m and block-dimension n

• Stride = blockDim.x * gridDim.x

• Start = threadIdx.x + blockIdx.x * blockDim.x

• Iterating in this way in all threads across all blocks, profiting from maximum parallelization

Grid dimension m and
block dimension n

G L O B A L M E M O R Y M A N A G E M E N T

• Vector addition example, how to handle memory for our vectors from host to device?

A. Scarabotto - GPU programming 50

1. Allocate global memory in device of
size N with cudaMalloc

2. Populate global memory with data
using cudaMemcpy:
cudaMemcpyHostToDevice

3. Run kernel

4. Synchronize after kernel completion

5. Read inputs back in host:
cudaMemcpyDeviceToHost

6. Pointer to global memory to be freed
with cudaFree

A W O R D O N S H A R E D M E M O R Y

• It is useful to define allocate shared memory from the kernel for much faster data usage, knowing its
limited size

• If its size is known in advance, it is better to allocate the correct size:

• __shared__ float variable_sh[N];

• Otherwise shared memory could also be allocated dynamically, but size must be known in the host by
passing an additional argument in the kernel call

• __shared__ float variable_sh[];

• kernel_name<<m,n, N * sizeof(float)>>();

A. Scarabotto - GPU programming 51

A T O M I C O P E R A T I O N S A N D R A C E C O N D I T I O N S

• We need to be cautious when modifying a value in memory and reading it again in different threads:

• Timing of threads can be different

• Three main operations: read, modify and write

• Use atomic operations:

• Makes the read-write-modify as a single operation = cannot be interrupted

• atomicAdd(), atomicSub(), …

• Usual use-cases: counting elements, searching elements in array, histogramming, …

A. Scarabotto - GPU programming 52

S A T U R A T I N G G P U : D E B U G G I N G

• We need to avoid saturating shared memory (O(KBs) and
registers (255 per thread max) which can cause loss of
performance

• Several ways to debug and profile (dynamic program
analysis) GPU code:

• nvprof: profiler built-in CUDA

• cuda-gdb: command line debugger based of gdb

• Nvidia nsight (ncu): debugger and profiler implemented
in VS Code and usable from command line

• nsys: command line profiler which produce analytics

A. Scarabotto - GPU programming 53

O T H E R E X A M P L E : M A T R I X M U LT I P L I C A T I O N

A. Scarabotto - GPU programming 54

• We quickly introduce tiling and coalasced memory accesses

T I L I N G

• Tiled data processing: dividing large datasets into many tiles which are processed at one time

• It is useful when data have similar patterns, such that threads can access memory in a tiled way

• Typical tiled-process:

1. Load tile from global to shared memory

2. Synchronize

3. Multiple threads access the data in shared memory

4. Synchronize

5. Move to the next tile

• Example: multiply two arrays of any given size by dividing it into tiles

A. Scarabotto - GPU programming 55

C O A L E S C E D M E M O R Y A C C E S S

• Global memory is organized into bursts sections, each cell representing a byte

• If threads make a memory request under the same burst section, the access is coalesced

• Non-coalesced memory access can significantly affect performance

• Advice:

• Access index to an array X should have a part depedent and indendent of threadIdx.x

• Example: X[x0 + threadIdx.x] with x0 independent of thread index

A. Scarabotto - GPU programming 56

O T H E R E X A M P L E : M A T R I X M U LT I P L I C A T I O N

• Advice: always store higher order arrays into 1D array

• Matrix multiplication becomes a 1D array multiplication:

• X of size m x n

• Y of size n x k

• Result is Z of size m x k

A. Scarabotto - GPU programming 57

X00 X01 X02

X10 X11 X12

X20 X21 X22

X00 X01 X02 X10 X11 X12 X20 X21 X22

O T H E R E X A M P L E : M A T R I X M U LT I P L I C A T I O N

• Matrix multiplication becomes a 1D array multiplication:

• X of size m x n

• Y of size n x k

• Result is Z of size m x k

• With this method access to Y are coalesced while X accesses are not

• This can be improved using shared memory

A. Scarabotto - GPU programming 58

X00 X01 X02 X10 X11 X12 X20 X21 X22

Y00 Y01 Y02 Y10 Y11 Y12 Y20 Y21 Y22

O T H E R E X A M P L E : M A T R I X M U LT I P L I C A T I O N

• This can be improved using shared memory, by preloading all elements of X and Y

• Only using coalesced accesses as all threads can access shared memory

• Example on how to load shared memory and using function of the previous slide to do 16 x 16 matrix
multiplication

A. Scarabotto - GPU programming 59

S T R E A M A N D P I P E L I N E S

• A stream is a sequence of commands to be executed in order, example, kernel invocations, memory
transmissions and allocations, synchronizations, …

• Any instructions run in a stream must complete before the next instruction is issued

• CUDA uses a default stream

• Non-default stream can be defined, but the default one will always have priority

• GPUs can actually perform in this way data transmissions while executing kernels = pipeline

• Typical pipeline with 3 streams:

• Use SMs to perform computations

• Transfer data from host to device

• Transfer data from device to host (using cudaMemcpyAsync to transfer data asynchrounsly in a
non-default stream)

A. Scarabotto - GPU programming 60

S U M M A R Y

• Starting from year ~2000, GPUs were starting to be used for general purpose

• It is important to understand how and how much of our algorithm can be parallelized

• GPUs are single instruction multiple threads (SIMT) devices

• Parallelization organised in blocks and threads

• The CPU-GPU communication is fundamental as the CPU is in charge of all time of the process and
can offload some work to the GPU

• It is important to know and understand the memory layout of a GPU to achieve the best performance
and use them in the best way

A. Scarabotto - GPU programming 61

R E S O U R C E S U S E D I N T H I S T A L K

• Most of what I learned comes from Dorothea vom Bruch (physics researcher at CPPM in Marseille) and
Daniel Campora (now Nvidia engineer)

• They do also amazing lectures, from which I took all the inspiration: tCSC2023 and tSCS2024

• Where to find material:

• https://docs.nvidia.com/cuda/cuda-c-programming-guide

• D. B. Kirk, W. w. Hwu: “Programming Massively Parallel Processors”

• J. Sanders, E. Kandrot: “CUDA by Example: An Introduction to General-Purpose GPU Programming”

• N. Wilt: “The CUDA Handbook: A Comprehensive Guide to GPU Programming”

A. Scarabotto - GPU programming 62

https://indico.cern.ch/event/1244566/overview
https://indico.cern.ch/event/1377435/
https://docs.nvidia.com/cuda/cuda-c-programming-guide

