
Efficient Python Programming
Dr Vassil Vassilev, Princeton/CERN

Tutor: Aaron Jomy, CERN

Prerequisites

• Be interactive, ask questions!
• Please share your own experience!
• Have a laptop
• Install the software required: https://compiler-

research.org/tutorials/efficient-python-programming/
• Should you have any problems with the installation find

Aaron during the break

2

Physical Warmup

• How many of you have used Python before?
• How many of you have a project > 1000 lines of code?
• > 5000 lines?
• > 15000 lines?
• How many of you worked in a team of 2 on such project?

• > 5
• > 10

• How many of you coded in a different language than Python?
• In a low-level language such as C++, C, or assembly?

• What’s your average data set? MB, GB, TB, PB?

3

Goals

• Understand the general principles behind high-performance
programming
• Recognize and explore performance optimization opportunities
• Build intuition about computer program execution
• Practice

4

Just Enough Performance

def f(N = 100, M = 1000, L = 10000):
for i in range(N):

for j in range(M):
for k in range(L):

g(i, j, k)

5

What Is Python?
• Delivers just enough performance

when relying on bare-metal
technologies
• NumPy is an enabler for an entire

data science ecosystem
• NumPy is very good but sometimes

far from bare metal, accelerators
and across nodes (means to address
the problem such as CuPy or Dask)
• Lets learn what else could be done

“This is why I love C and use Python for most of the work I do...”, a happy user on the internet

BLAS, LAPACK CUDA

6

Outline

Problem

Design, Algorithm, Data

Source Code

Compilers, libraries

System Architecture

Instruction Set

Microarchitecture

Integral Schemes

~10x-1000x

~2x-10x

~10%-20% (w/o vectorization)

~5%-20%

~10%-30%

What is my problem? Can I classify it?

What is the step-by-step solution to my problem?

What is the step-by-step solution in code?

What other tools and technologies I can use?

What’s my hardware? How much resources I have?

What are the commands that my chip understands?

What are the implementation details of my chip?

Which commands are implemented with transistors?

7

Outline

Problem

Design, Algorithm, Data

Source Code

Compilers, libraries

System Architecture

Instruction Set

Microarchitecture

Integral Schemes

~10x-1000x

~2x-10x

~10%-20% (w/o vectorization)

~5%-20%

~10%-30%

8

If I had an hour to solve a problem I’d spend 55 minutes thinking about the
problem and 5 minutes thinking about the solutions

- Albert Einstein

9

Problem Defining

• Is a problem worth solving?
• What would be the impact of having a solution?
• Is the problem new to the domain?
• Does the problem exist anywhere else? How it is solved in other

domains?
• What domain knowledge it requires and can it define away some

issues with existing solutions?
• Can I decompose the it
• Pontryagin’s suboptimality principle
• Morphology analysis

10

Solution Designing

• What’s the mathematical foundation of
my solution?
• What are the implementation

requirements?
• Do I need 3 years to implement it?
• What skills?
• How many people?

11

Solution Designing

• How do I translate the solution into code?
• What’s my input data?
• What algorithms I should use? What’s their complexity?
• What are my data structures?
• How to scale?

Debugging is 3 times more difficult than coding the algorithm.
What happens if coded a solution at the limit of our skills?

12

Design (Anti-)Patterns

• In software engineering, a design pattern
describes a relatively small, well-defined
aspect (i.e. functionality) of a computer
program in terms of how to write the
code.

• Using a pattern is intended to leverage
an existing concept rather than re-
inventing it. This can decrease the time
to develop software and increase the
quality of the resulting program.

13

Design Pattern Description

Each pattern is classified as either creational, structural or behavioral and described by a section on:
• Intent – What is the overall idea of the pattern
• Motivation – What is the problem that’s being solved
• Applicability – What are the common scenarios to use the pattern
• Structure – A high-level UML description of the entity relationships of the pattern
• Participants – What is the responsibility of the UML entities
• Collaborations – What’s the impact on the client
• Consequences – What are the new trade-offs
• Implementation – High-level description of the implementation ideas
• Sample Code – How the implementation can be used in code illustratively
• Known Uses – What are the uses in well-known software
• Related Patterns – What are the other competing patterns and how they can be combined

14

https://refactoring.guru/15

Algorithm

What makes one program better than
another?
• Correctness
• Speed
• Resources it takes
• What else?

16

Algorithm Analysis. Example

Find the sum of the first N numbers.

def sum_to_n(n):
 total = 0
 for i in range(n + 1):
 total += i
 return total

N Time (s) RSS (kb)

1M 0.08 11320
2M 0.14 10952
3M 0.21 11172
4M 0.26 11416
5M 0.33 11156
6M 0.39 11180
7M 0.46 11056
8M 0.52 11188
9M 0.58 11088

!
!"#

$
" !

!"#

$
" = $($ + 1)

2

17

The Big Picture With Big O
Worst-case algorithm complexity analysis.

*(
2$
)

*(
$+
,-

$
) * $

*($%)
*($&)

* 1

op
er

at
io

ns

elements

Big O is an asymptotic notation which is
used limited behavior of function.

In CS is used to classify algorithms
according to how their run time or
space requirements grow as the input
size grows.

A very important tool in the
programmer’s toolbox.

18

Handout time

19

The Big Picture With Big O
Worst-case algorithm complexity analysis. O

*(
2$
)

*(
$+
,-

$
) * $

*($%)
*($&)

* 1

op
er

at
io

ns

elements

f(n) Name Example
1 Constant
logn Logarithmic
n Linear
nlogn Log Linear
n2 Quadratic
n3 Cubic
2n Exponential Halting problem/Generalized Chess, Go
n! Factorial Brute forcing travel salesman

20

Big O. Limitations.

• O(M*N2) can matter
• Worst-case scenarios happen rarely
• Depending on the properties of the input data the algorithmic

complexity can vary

list = [1, ..., 63]
list.append(64) # Would that be O(1)?

Amortized O(1)

21

Programming is the art of replacing old bugs with new ones.
- My personal experience

22

Brief History of Programming Languages

• 1957 Fortran first compilers
(arithmetic expressions,
statements, procedures)

• 1960 Algol first formal definition of PL
(BNF grammars, block structure,
recursion)

• 1970 Pascal user-defined types, virtual
machines

• 1972 C structured programming, static type
system

• 1985 C++ object-oriented, exceptions,
templates

• 1991 Python duck typing, ease of use

• *Important steps in imperative PL

MC

ASM

C, C++, Python

I Gen

IV

III

II

Prolog, …

SQL, R, Halide

V

Le
ve

l o
f a

bs
tra

ct
io

n

23

Language Design Principles

C++
• Efficiency
• Stability
• Backward compatibility

“Special cases aren't special enough to
break the rules” Zen of Python Link

Python
• Readability
• Simplicity
• Flexibility

“Prioritizes Performance over Surprise which
is sometimes surprising“ T. Winters Link

24

https://peps.python.org/pep-0020/
https://youtu.be/LJh5QCV4wDg

Translating Programming Languages
Symbol Stream

Token Stream

Syntax Tree

v a l = 1 0 * v a l + i

Scanning

ident
“val”

assign
=

number
10

mul
*

ident
“val”

plus
+

ident
i

Kind
Value

=
val +

* i

10 val

Parsing

25

Translating Programming Languages

Syntax tree, symbol table, ...

Syntax Tree

=
val +

* i

10 val

Semantic Analysis

Intermediate
representation

Optimization

Code Generation

push rbp
mov rbp, rsp
mov qword ptr [rbp - 8], rdi
mov dword ptr [rbp - 12], esi
mov rax, qword ptr [rbp - 8]
imul ecx, dword ptr [rax], 10
...
ret

26

Translator Classification
Compiler translates to machine code

Interpreter executes the source “directly”

Hybrid compiler interprets intermediate representation

Lex Parse ... CodeGen

Source Machine code

loader

Lex Parse

Source

v The operators in loops are
analyzed again and again

...translate...

Source

v The source translates to code
for virtual machine (VM)

v The VM runtime interprets the
code simulating real machine

v The Just-In-Time compiler
translates the representation at
startup time.

interpretation

Intermediate Representation
(eg. bytecode)

VM
JIT

Interp

27

Python Jungle

...parse...

Python

ceval.cCP
yt

ho
n

–
Th

e
"t

ra
di

tio
na

l"
im

pl
em

en
ta

tio
n

of
 P

yt
ho

n
in

 C

JPython

JVM

...parse...

Written in Java

IronPython

CLR

...parse...

Written in C#

Cython

Su
pe

rs
et

s/
Su

bs
et

s

Trading Flexibility for Performance

...transpile into C...

RPython

PyPy JIT

Numba

LLVM JIT

28

https://github.com/python/cpython/blob/main/Python/ceval.c

0.5
Unbox

0.5
Unbox

Trading Performance For Flexibility

Python

def add(a, b):
 return a + b
add(0.5,0.5)

Python VM

0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_ADD
6 RETURN_VALUE

...parse...

CPython – The "traditional" implementation of Python in C

ceval.cmov ax, 1
for static language

PyObject * PyNumber_Add(PyObject *v, PyObject *w) {...}

0.5

+

Box
0.5

Box

29

https://github.com/python/cpython/blob/main/Python/ceval.c
https://github.com/python/cpython/blob/1dad23edbc9db3a13268c1000c8dd428edba29f8/Objects/abstract.c

“The real problem is that programmers have spent far too much time worrying
about efficiency in the wrong places and at the wrong times; premature

optimization is the root of all evil (or at least most of it) in programming.”
- Donald Knuth

30

Expressing Optimization Assumptions

• Use built-in functions and libraries
They are heavily optimized and implemented in C. Eg. use sum() instead of manually iterating

• Avoid global state
Global variables are slower to access and hinder optimizations

• Minimize the use of loops
Use map, filter, reduce from libraries such as NumPy

• Use proper data structures
Choose the correct data structure for the task. Prefer immutable types such as tuple and frozenset.
Prefer pre-allocated, pre-resized types to avoid amortization effects

• Be mindful with string operations such as concatenation

31

Expressing Optimization Assumptions

• Avoid excessive object creation
Think about the created objects especially in tight loops

• Avoid memory leaks in resource release
Use the `with` construct to manage resources such as files or network connections

• Avoid using try/except constructs for control flow
Exceptions are designed for error handling and less so for other things

• Avoid unnecessary abstractions
Abstractions introduce often indirection which can be inefficient

• Use declarative style
List comprehensions and generator expressions allow sometimes better performance.

• Use memoisation techniques to avoid recomputation
Cache results with `functools.lru_cache`

32

From Bindings to Full Language InterOp

Python

def add(a, b):
 return a + b
add(0.5,0.5)

Python VM

0 LOAD_FAST 0 (a)
2 LOAD_FAST 1 (b)
4 BINARY_ADD
6 RETURN_VALUE

...parse...

CPython – The "traditional" implementation of Python in C

ceval.c

PyObject * PyNumber_Add(PyObject *v, PyObject *w) {...}

0.5

0.5 0.5+
Unbox

0.5
Box Box

Unbox

MyFastAdd.c

MyFastAdd.soctypes

FastAdd.cxx

MyFastAdd.so

gcc

FastAddBind.cxx
pybind11

setup.py, __init__.py

g++

MyFastLib.so

cppyy

JIT

cp
py

y.g
bl

.a
dd

(0
.5

,0
.5

)

Type-Annotated Python

@njit(noPython=True)
def add(a: float, b: float) -> float:
 return a + b
add(0.5,0.5)

JIT

NumbaCython

C

33

https://github.com/python/cpython/blob/main/Python/ceval.c
https://github.com/python/cpython/blob/1dad23edbc9db3a13268c1000c8dd428edba29f8/Objects/abstract.c

specialized, numerical,
opt-in JIT-compilation

converts Python into C/C++
for compilation as a new
extension module

mixes C/C++ and Python
(with annotations or as a
new language)

dynamic bindings to shared
library files ("extern C")

creates C++ bindings
from a configuation file

C++ conveniences on top
of the Python C API

direct Python API in C

1990 1995 2000 2002 2004 2006 2008 2010 2012 2014 2016 2018 2020 2022 2024

dynamic C++ integration

Python C API HPy
Boost::Python

pybind11
nanobind

SWIG
SIP

Py++
pybindgen

Shiboken(2)
AutoWIG

PyCLIF

cppyy

ctypes
cffi

PyInline
pyrex

SciPy weave
Cython

shedskin
Nuitka

Pythran
Pythonic++

psyco

PyPy
Unladen Swallow

pylibjit
HOPE

Numba

Pyston

JAX
Taichi

Seq/Codon

NVIDIA/warp

compilation or hotspot JIT
as a new Python shell

Mojo

34

ctypes

// Add.c
int add(int a, int b) {
 return a + b;
}

libAdd.so

gcc -shared -o libAdd.so Add.c

import ctypes

Load the shared library
lib = ctypes.CDLL('./libAdd.so')

Specify the argument types and return type
for the C function
lib.add.argtypes = (ctypes.c_int, ctypes.c_int)
lib.add.restype = ctypes.c_int

Call the function
result = lib.add(3, 4)

Both sides
manual by the

user
35

pybind11
// Add.cpp
#include <pybind11/pybind11.h>

int add(int a, int b) {
 return a + b;
}

PYBIND11_MODULE(example, m) {
 m.def("add", &add, "...");
}

from setuptools import setup, Extension
import pybind11

setup(name="adder",...)

python setup.py build_ext --inplace

import adder
result = adder.add(3, 4)

Manual by the
library author,

doesn’t work well
with templates

36

cython
add.py
import cython

def add(a:cython.int, b:cython.int)->cython.int:
 return a+b

cythonize --annotate -3 --inplace add.py

import add
result = add.add(3, 4)

Manual by the
library author

37

numba

import numba
@numba.jit(noPython=True)
def add(a,b):
 return a+b

Call the function
result = add(3, 4)

; LLVM IR
define i32 @_ZN8__main__...dEdd(...) {
entry:
 %.6 = fadd double %arg.a, %arg.b
 store double %.6, double* %retptr, align 8
 ret i32 0
} JIT

Automatic, no
C++ support

38

cppyy

; LLVM IR
define i32 @_ZN8__main__...dEdd(...) {
entry:
 %.6 = fadd double %arg.a, %arg.b
 store double %.6, double* %retptr, align 8
 ret i32 0
} JIT

import cppyy

cppyy.cppdef("
 int add(int a, int b) {
 return a+b;
 }")

Call the function
result = cppyy.gbl.add(3, 4)

#include <Eigen>

Automatic with
C++ support

39

On-Demand Language Interoperability
Crossing the
language barrier
is expensive

Our Compiler-As-A-
Service Approach
solves that

40

Instead of Conclusion

Optimal performance is a continuous process in building trust in your:
• Developers
• Compilers
• Libraries
• Hardware

Just like trust, performance is hard-earned, easily lost, difficult to re-
establish

41

