GPU PROGRAMMING EXERCISES

Alessandro Scarabotto
. Jil) Dortmund Germany
Email; alessandro scaraboito@cernch

Fast and Efficient Python Programming School
August 2024 -
Aachen, Germany

technische universitat Cw
- dortmund \



mailto:alessandro.scarabotto@cern.ch

EXERCISES

Login (or register) into VISPA cluster: https://vispa.physik.rwth-aachen.de

You can find the exercises in the examples page of VISPA

To be able to use a GPU you need to submit a job to the cluster:
« submit -f —-M 2000 python example.py
« submit -f —-M 2000 ./example (you need to create the executable first)

You can open them in the file editor

Running either from terminal or built-in command line in file editor page

A. Scarabotto - GPU programming


https://vispa.physik.rwth-aachen.de/

EXERCISES

» Exercises order:

» Hello World:
* Running a first CUDA kernel
» Testing on CUDA and PyCUDA

» Vector addition:
« Making a first threaded loop and strided-loop
* Profiling your kernel to measure speed and GPU stats

* Matrix multiplication:
 How to speed a matrix multiplication improving the parallelization

* How to exploit at best the GPU memory layout

A. Scarabotto - GPU programming



EXERCISE 0: GPU STATUS

Check the status of the GPU assigned to you with the Nvidia system management interface:
« submit —f —-M 2000 nvidia-smi

You get GPU name, driver and CUDA version

Get more information running the device_properties.cu
e .cuis the extension of CUDA accelerated files

* nvce is used a compiler, use —o to specify output file and —arch to indicate the architecture (use
native to checkout the current available GPU, otherwise check CUDA docs)

* Then run the compiled output program

Example:
* nvcc —arch=native —o device_properties device_properties.cu
« submit —f -M 2000 ./device_properties

A. Scarabotto - GPU programming


https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

EXERCISE 0: GPU STATUS

* You can get from here many info from the GPU you are using:
« @Grid, block and warp size
» Global and shared memory

 Number of streaming multiprocessors

* |f you want to make sure no one is using your GPU simultaneously, you can run:

« submit —f —M 2000 ./run-exclusive.sh ./device_properties

A. Scarabotto - GPU programming



EXERCISE 1: HELLO WORLD

* Go on and modify hello_world/hello_world.cu
* You see the CPU calling of the printf: you can add the GPU version and kernel call
* The compile with nvcc and run the code which requires as input n_blocks and n_threads

« Example with 1 block and 1 thread:
« submit —f —M 2000 ./hello_world 1 1

» Try to change n_blocks and n_threads and see what the code prints out

e Try to run hello_world in PyCUDA

» Copy your __global__ function into hello_world.py

* submit -f —-M 2000 python hello_world.py

A. Scarabotto - GPU programming



EXERCISE 2: VECTOR ADDITION

» Perform vector addition allocating first memory in the GPU, perform the addition and finally return the
output to the host

» Code takes 3 arguments: size of vectors, n_blocks and n_threads
« Example: ./vector_addition 36 6 6

* You can vary n_blocks and n_threads, if you have written a correct strided-loop, you should get the
correct answer

* The vector content is stored into host variable and transferred to global memory in the device, labels
_hand _d are used to distinguish host and device variables

A. Scarabotto - GPU programming



PROFILING

Use the Nvidia profiler to profile and check performance of your code

Example:

» nvprof —s ./vector_addition 36 6 6

Try to check: name of your kernel application, how many times it run, how long did it run for

You can try to print other info, explore nvprof —-help

A. Scarabotto - GPU programming



EXERCISE 2: VECTOR ADDITION

* Try to run vector addition in pyCUDA
* Find vector_addition.py and modify it to make it work

» Define vectors with numpy with a specific type

A. Scarabotto - GPU programming



EXERCISE 3: MATRIX MULTIPLICATION

» Using squared matrices to simplify the code, Ax B =C
« All elements of C can be calculated independently = let's parallelize it

* Try to compile and run matrix_multiply.cu taking as input argument the matrix size:

 ./matrix_multiply 512

* You can try to parallelize the work over threads in 2 dimensions threadldx.x and threadldx.y
* Modify for loop and change n_threads
« /matrix_multiply_threads 512
» Profile the application with nvprof and record the time taken by the processing
* |ncrease the parallelization adding more blocks (defined as a 2D grid) trying to make every thread
calculating a single element of the final matrix C:
 ./matrix_multiply_grid 512
» Profile application and see If you increased speed
* You can try to define loops over threads/blocks or make a strided loop

A. Scarabotto - GPU programming

10



EXERCISE 4: SHARED MEMORY

Use shared memory and tiling method to split data into memory

Define the tile size (=32) at compile time

All threads participate in loading tiles into memory, calculate partial result to registers and move to the

next tile

Try to compile and run matrix_multiply_shared.cu taking as input argument the matrix size:

« /matrix_multiply_shared 512

* Profile the application and check time

A. Scarabotto - GPU programming

11



EXERCISE 5: PRECISION

It is important to understand the precision needed by your algorithm

Requiring less or more precision both in the arithmetic or memory could impact performance

We can test using storage as double, float and half precision and similarly for arithmetic (modifying
storage_T and arithmetic_T): make all possible combinations

Try to run setting a threshold = 0.01:
« /matrix_multiply_precision 512
* Which threshold do you need to make each combination pass?

* Run profiler to get timing of each combination

A. Scarabotto - GPU programming

12



BONUS EXERCISE: LHCB TRIGGER

* You can try to git clone the LHCb software handling the trigger: Allen

* The documentation explains how to write a small kernel performing reconstruction of tracks from
particles: https://allen-doc.docs.cern.ch/index.html

* You can define a quick kernel which reconstruct tracks from a simulated sample and counts them
with an AtomicAdd

A. Scarabotto - GPU programming

13


https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html

RESOURCES FROM EXERCISES AND EXTRA
INFORMATION

The exercises are adapted from: https://qgitlab.cern.ch/dcampora/tcsc-gpulab

You can find there also more exercises and in depth explanations in a jupyter notebook

Many more exercises and examples carefully explained in the Nvidia docs:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

Examples for PyCUDA_https://wiki.tiker.net/PyCuda/Examples/

A. Scarabotto - GPU programming

14


https://gitlab.cern.ch/dcampora/tcsc-gpulab
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://wiki.tiker.net/PyCuda/Examples/

