
G P U P RO G R A M M I N G : E X E RC I S E S
Alessandro Scarabotto

TU Dortmund, Germany
Email: alessandro.scarabotto@cern.ch

Fast and Efficient Python Programming School
August 2024

Aachen, Germany

mailto:alessandro.scarabotto@cern.ch

E X E R C I S E S

• Login (or register) into VISPA cluster: https://vispa.physik.rwth-aachen.de

• You can find the exercises in the examples page of VISPA

• To be able to use a GPU you need to submit a job to the cluster:

• submit –f –M 2000 python example.py

• submit –f –M 2000 ./example (you need to create the executable first)

• You can open them in the file editor

• Running either from terminal or built-in command line in file editor page

A. Scarabotto - GPU programming 2

https://vispa.physik.rwth-aachen.de/

E X E R C I S E S

• Exercises order:

• Hello World:

• Running a first CUDA kernel

• Testing on CUDA and PyCUDA

• Vector addition:

• Making a first threaded loop and strided-loop

• Profiling your kernel to measure speed and GPU stats

• Matrix multiplication:

• How to speed a matrix multiplication improving the parallelization

• How to exploit at best the GPU memory layout

A. Scarabotto - GPU programming 3

E X E R C I S E 0 : G P U S T A T U S

• Check the status of the GPU assigned to you with the Nvidia system management interface:

• submit –f –M 2000 nvidia-smi

• You get GPU name, driver and CUDA version

• Get more information running the device_properties.cu

• .cu is the extension of CUDA accelerated files

• nvcc is used a compiler, use –o to specify output file and –arch to indicate the architecture (use
native to checkout the current available GPU, otherwise check CUDA docs)

• Then run the compiled output program

• Example:

• nvcc –arch=native –o device_properties device_properties.cu

• submit –f –M 2000 ./device_properties

A. Scarabotto - GPU programming 4

https://docs.nvidia.com/cuda/cuda-compiler-driver-nvcc/index.html

E X E R C I S E 0 : G P U S T A T U S

• You can get from here many info from the GPU you are using:

• Grid, block and warp size

• Global and shared memory

• Number of streaming multiprocessors

• If you want to make sure no one is using your GPU simultaneously, you can run:

• submit –f –M 2000 ./run-exclusive.sh ./device_properties

A. Scarabotto - GPU programming 5

E X E R C I S E 1 : H E L L O W O R L D

• Go on and modify hello_world/hello_world.cu

• You see the CPU calling of the printf: you can add the GPU version and kernel call

• The compile with nvcc and run the code which requires as input n_blocks and n_threads

• Example with 1 block and 1 thread:

• submit –f –M 2000 ./hello_world 1 1

• Try to change n_blocks and n_threads and see what the code prints out

• Try to run hello_world in PyCUDA

• Copy your __global__ function into hello_world.py

• submit –f –M 2000 python hello_world.py

A. Scarabotto - GPU programming 6

E X E R C I S E 2 : V E C T O R A D D I T I O N

• Perform vector addition allocating first memory in the GPU, perform the addition and finally return the
output to the host

• Code takes 3 arguments: size of vectors, n_blocks and n_threads

• Example: ./vector_addition 36 6 6

• You can vary n_blocks and n_threads, if you have written a correct strided-loop, you should get the
correct answer

• The vector content is stored into host variable and transferred to global memory in the device, labels
_h and _d are used to distinguish host and device variables

A. Scarabotto - GPU programming 7

P R O F I L I N G

• Use the Nvidia profiler to profile and check performance of your code

• Example:

• nvprof –s ./vector_addition 36 6 6

• Try to check: name of your kernel application, how many times it run, how long did it run for

• You can try to print other info, explore nvprof --help

A. Scarabotto - GPU programming 8

E X E R C I S E 2 : V E C T O R A D D I T I O N

• Try to run vector addition in pyCUDA

• Find vector_addition.py and modify it to make it work

• Define vectors with numpy with a specific type

A. Scarabotto - GPU programming 9

E X E R C I S E 3 : M A T R I X M U LT I P L I C A T I O N

• Using squared matrices to simplify the code, A x B = C

• All elements of C can be calculated independently à let’s parallelize it

• Try to compile and run matrix_multiply.cu taking as input argument the matrix size:

• ./matrix_multiply 512

• You can try to parallelize the work over threads in 2 dimensions threadIdx.x and threadIdx.y

• Modify for loop and change n_threads

• ./matrix_multiply_threads 512

• Profile the application with nvprof and record the time taken by the processing

• Increase the parallelization adding more blocks (defined as a 2D grid) trying to make every thread
calculating a single element of the final matrix C:

• ./matrix_multiply_grid 512

• Profile application and see if you increased speed

• You can try to define loops over threads/blocks or make a strided loop

A. Scarabotto - GPU programming 10

E X E R C I S E 4 : S H A R E D M E M O R Y

• Use shared memory and tiling method to split data into memory

• Define the tile size (=32) at compile time

• All threads participate in loading tiles into memory, calculate partial result to registers and move to the
next tile

• Try to compile and run matrix_multiply_shared.cu taking as input argument the matrix size:

• ./matrix_multiply_shared 512

• Profile the application and check time

A. Scarabotto - GPU programming 11

E X E R C I S E 5 : P R E C I S I O N

• It is important to understand the precision needed by your algorithm

• Requiring less or more precision both in the arithmetic or memory could impact performance

• We can test using storage as double, float and half precision and similarly for arithmetic (modifying
storage_T and arithmetic_T): make all possible combinations

• Try to run setting a threshold = 0.01:

• ./matrix_multiply_precision 512

• Which threshold do you need to make each combination pass?

• Run profiler to get timing of each combination

A. Scarabotto - GPU programming 12

B O N U S E X E R C I S E : L H C B T R I G G E R

• You can try to git clone the LHCb software handling the trigger: Allen

• The documentation explains how to write a small kernel performing reconstruction of tracks from
particles: https://allen-doc.docs.cern.ch/index.html

• You can define a quick kernel which reconstruct tracks from a simulated sample and counts them
with an AtomicAdd

A. Scarabotto - GPU programming 13

https://gitlab.cern.ch/lhcb/Allen
https://allen-doc.docs.cern.ch/index.html

R E S O U R C E S F R O M E X E R C I S E S A N D E X T R A

I N F O R M A T I O N

• The exercises are adapted from: https://gitlab.cern.ch/dcampora/tcsc-gpulab

• You can find there also more exercises and in depth explanations in a jupyter notebook

• Many more exercises and examples carefully explained in the Nvidia docs:
https://docs.nvidia.com/cuda/cuda-c-programming-guide/

• Examples for PyCUDA: https://wiki.tiker.net/PyCuda/Examples/

A. Scarabotto - GPU programming 14

https://gitlab.cern.ch/dcampora/tcsc-gpulab
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://wiki.tiker.net/PyCuda/Examples/

