reen group:

Lukas Beiske, Keerthana Chand, Alec Hilberg, Leandro Intelisano, Felix Krtckel,
Tereza Vaclavu, Felix Zinn

AERUM

« All team members get into the task

« Discussion about the possibilities and which
direction we should go

* Split the team in 3 subgroups

One subgroup tries to implement the functionality with JAX

The one subgroup also try rewrite code to Numba-Cuda

source: wikipedia

« Other subgroup tries to find structural optimizations

« We found the mirror axis of the image — tries to improve the code by
introducing geometrical restrictions

A ERUM

Plan A: JAX Plan B: Numba Cuda Improvements

- try to rewrite everything in JAX - the plan with JAX not working - try to improve the code only by
properly, the next step try in using the mirror axis (iny
Numba Cuda direction) of the image

- test if this this approach speeds
up the calculation

- rewrite part of the code in cuda — implement in used code
to speed up
best GPU best CPU Python

Python "for" loops: imperative

NumPy: array-oriented

pybind11: imperative in C++

Cython: imperative in a C++/Python hybrid

Numba: imperative in a compiled subset of Python

Numba vectorize: imperative per pixel, array-oriented in the large

JAX: array-oriented with automatic fusion into JIT-compiled routines on CPU
CuPy: array-oriented on a GPU

CuPy with a custom kernel: imperative per pixel, array-oriented in the large
Numba-CUDA: imperative per pixel, array-oriented in the large

JAX: array-oriented with automatic fusion into JIT-compiled routines on GPU

10! 102 102
time for 2000x3000 pixels (ms), smaller is better

credits: https.//qgist.github.com/jpivarski/da343abd8024834ee8cbaaba691aafc7#file-plot-mandelbrot-on-all-accelerators-colab-svg

10

https://gist.github.com/jpivarski/da343abd8024834ee8c5aaba691aafc7#file-plot-mandelbrot-on-all-accelerators-colab-svg

AERUM

Plan A: JAX

Yesterday:
terminated python challenge_jax.py

Today:
15 tiles: 1.5080 (4.1e3)

— while loops in jax are
difficult... and if
statements, too...

Plan B: Numba Cuda

Converted the

count_mandelbrot function.

Didn’t have the time to
finish the full pipeline.

The idea was to calculate
different tiles using
Streams and save .npy
files of the numers.

Improvements: Geometry

100 tiles, samples in batch 100

Used code:
1.50657 (1.39e*) -18s

Apply the geometry restrictions:
1.50649 (1.6e™) -13's

Speed up proved
> Check with GPU solutions
necessary

A ERUM JAX Strategy

DATAHUB

;&ERUM

Difficulties

is in mandelbrot(x, y):
"""Toirtoise and Hare approach to check if point (x,y) is in Mandelbrot set."""
C = jnp.complex64(x) + jnp.complex64(y) * jnp.complex64(1lj)
z hare = z tortoise = jnp.complex64(0) # tortoise and hare start at same point
while True:

z hare z hare * z hare + ¢

z hare (

| z hare * z hare + c

)

z tortoise = z tortoise * z tortoise + ¢ # tortoise is or ep behind

if z hare == z tortoise:

| return True # orbiting or converging to zero
if z hare.real**2 + z hare.imag**2 > 4:

| return False # diverging to infinity

AERUM

@jax.jit
def mandelbrot jax(x, y):
C=Xx+y*1j
init vals = (jnp.complex64(0), jnp.complex64(0), c)

def cond fun(val):
diverge = (val[0].real ** 2 + val[0].imag ** 2)
not converge = val[0] != val[l]
cond = ~diverge & not converge
return cond

body fun(val):
zhare, ztort, = val

zhare = zhare * zhare + ¢
zhare zhare * zhare + ¢

ztort Ziore * ztort + ¢

return (zhare, ztort, c)

return jax.lax.while loop(cond fun, body fun, body fun(init vals))

AERUM

» Further debugging of JAX solution to get a fully working and speed-wise improved solution

» Finishing the numba-cuda approach to have another comparison for the uncertainty and run-
time

» Implementation of geometrical restriction in all GPU approaches to further improve run-time

