
Mandelbrot Area
Challenge
GROUP 7:
Max Fuste Costa, Ahmar Khaliq, Oleksandr Koshchii, Arul Parkash, Jannis
Schaeper, Sebastian Vetter, Sarah Wagner

Organization among the Team

Organization among the Team

- Optimization of the RNG spawner
- Profiling
- Trying to port the numba JIT to jax
- Vectorizing the most often used functions

Ansatz

Ansatz

● go through provided code “challenge.py” and “challenge.ipynb”
○ running this on CPU only yields an area of 1.50687 +/- 0.00014 in 15s of runtime

● find bottlenecks with profiling and improve expensive parts
● lots of different approaches for improving the bottlenecks
● compare: a) initial number tiles and time it takes on CPU without code modification, b)

implement GPU calculation with improvements and with CUDA

Improvements

Improvements
● Mandelbrot is symmetric on imaginary axis —> considering half is enough
● types: np.complex slower than python complex

○ c = np.complex64(x) + np.complex64(y) * np.complex64(1j) —> c = x + y * 1j

●

Improvements
● Results of Profiling on “is_in_mandelbrot(x, y)” :

○ Replacing square function by multiplication reduces if’s time consumption from 74.8% to 63.1% of loop time
consumption

○ scaling outside of for loop:

Results

Result

Area of Mandebrot set:
1.5065985375000004 +/- 1.6316288545394807e-05
Calculated in 8s

Outlook

Outlook

● One big problem for parallelization: while-loop in the is_in_mandelbrot computation
○ Calculated a fixed number of iterations (enough that xx% converge or diverge) and calculate the if-else

branching vectorized on this
○ Make function output two boolean arrays instead of returning when condition is met

● Correctly implement the CUDA-kernel in numba (or even directly in CUDA)

