
Mandelbrot Area
Challenge
GROUP 1 / Red

Jan Lukas Späh, Felix Pfeifle, Ahmad Ihsan, Nicolas Hayen, Máté Farkas

Organization among the Team

Distribution of work

● Jan Lukas and Felix: Numba/Cuda implementation and optimisation
● Ahmad: Port python code into c++
● Nicolas: Mathematical investigations, algorithm improvements
● Máté: Python code port and the C++ code optimization

Approaches

Discriminator Optimization

● Refine bounds of sampling box
○ x_min to 0.49
○ y_max / y_min to 1.15

● Terminate early for initial c with abs(c) > 2
● Terminate early if within first cardioid (N=1) or first order element

(N=2)
● Improvement by about 20%

Source: O.Knill, The Area of the Mandelbrot Set,
https://people.math.harvard.edu/~knill/teaching/math21a2019/exhibits/mandelbrot/mandelbrot.pdf

● Tried alternative algorithms to Tortoise and Hare
● Cached intermediate iteration results and compare
● No improvement in testing

https://people.math.harvard.edu/~knill/teaching/math21a2019/exhibits/mandelbrot/mandelbrot.pdf

Technical Implementation
● Using the provided code with numba.cuda it can run on a

GPU
● The calculation of the sampled tiles was parallelized over the

GPU blocks
● With 32x32 threads per block choosing tiles as a multiple of

32 so the area is divided over the number of blocks
● Implementation:

○ Split grid into blocks of 32x32 and tiles
○ 1 tile = 1 thread

● Important: Use float32 and complex64 to reduce memory
footprint per thread

● Also tried direct C++ cuda implementation: Reduce overhead
from JIT compilation

Results

Numba-CUDA Implementation

● Calculation performed on Nvidia L40
● Result in 1m7s

○ Area: 1.50659(4)
○ Width of 95% interval: 7.1e-06
○ Relative Uncertainty: 4.7e-06

● Result in 3m49s
○ Area: 1.50659(57)
○ Width of 95% interval: 1.4e-06
○ Relative Uncertainty: 9.1e-07

● Result in 14m35s
○ Area: 1.506597(5)
○ Width of 95% interval: 4.4e-07
○ Relative Uncertainty: 2.9e-07

C++ CUDA Implementation

● Configuration:
○ nvidia RTX 4060
○ 10x10 grid
○ 1 thread per grid
○ uncertainty target: 1e-2
○ t = 23.14 s
○ A = 1.501196

Outlook

Possible improvements

● Adaptive tiling based on the uncertainty: Iterative approach
○ Divide boundary tiles into subtiles: Leave out homogenous tiles
○ Run kernel again with improved granularity
○ Aggregate results

● Almost free lunch: Use symmetry
● C++:

○ cuda random number generation slow
○ no striding
○ further improvement expected with global variable

incrementation

