
Mandelbrot Area
Challenge
The almond bread tilers / Jose, Julia, Florian, Niclas, Saurabh, David

Organization among the Team

split into smaller teams working on subproblems
● improving the algorithm
● implementing it on the GPU
● combining results (see later!)

● use git to collaborate on code (repository)

https://github.com/davekch/mandelbrot-challenge

Ansatz

1. Optimization of the algorithm
2. Implementation on GPU

- exploit symmetry
- optimized tiling: smaller tiles at the border of the

mandelbrot set
- idea: tiles completely inside or outside of

the Mandelbrot set will converge quickly
- start with coarse tiling
- run count_mandelbrot with small sample

size on CPU; if there are both convergent
and divergent points, recursively split the
tile until a certain depth

- run count_mandelbrot with large sample
size on the GPU on the found tiles

- calculate area + uncertainty per tile
- combine results

1. Optimization of the algorithm

def split_tile(tile):
 if border in tile:
 tiles = quarter_tile(tile)
 for tile in tiles:
 split_tile(tile)
 else:
 return tile

1.1 Uncertainties

Checked wald uncertainties:
- uncertainty for full area

3.36e-3
- total uncertainty of different sized tiles

3.21e-3
for same sample (N = 1e6)

- condition-function
- check if diverged/converged

- body-function
- does the tortoise/hare technique
- actually computes the condition

- use jax.lax.while_loop

- tried to implement max_iter but that
would have given wrong results

- need to wait for some points for a
long time

Tile 90: 1M samples ~ 5s
Tile 100: 1M samples > 5 minutes

2. GPU Implementation

Results

Plan:

- Run multiple jobs on different tiles
- scale-out with jax.vmap, jax.lax.map, jax.scan….

Unfortunately

- JAX steals 75% of VRAM as default…
- VISPA job-killing mechanism currently off

XLA_PYTHON_CLIENT_PREALLOCATE=false

So Jobs failed because “someone” was using more VRAM that he claimed :(

3. Scaling Out

BIG results coming soon!

Problem on VISPA
Unfortunately

- JAX steals 75% of VRAM as default…
- VISPA job-killing mechanism currently off

XLA_PYTHON_CLIENT_PREALLOCATE=false

So Jobs failed because “someone” was using more VRAM that he claimed :(

BIG results coming soon!

Our Jobs killing our jobs like

area = 1.415 +- 0.026

number of samples = 98,863,500

110 failed jobs with no sampling!

Different result estimation

Original implementation: 1.50638855 ± 1.38e − 4, n_samples: 5e8

Numba Cuda implementation: 1.512369 ± 0.00077 , n_samples: 1e6

1.509 ± 7.36e-5, n_samples: 1e7

1.5095 ± 7.26e-6, n_samples: 1e8

1.51028 ± 7.37e-5, n_samples: 1e9

Recursive on CPU: 1.507 +/- 0.007, n_samples: 1522000

Outlook

● Fix VISPA (You, Niclas!)
● figure out how to calculate uncertainty / confidence intervals correctly
● improve algorithm: uncertainty threshold instead of fixed number of samples

