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Plasma acceleration is described by kinetic plasma dynamics

Regular mesh
Macroparticles

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

• Lagrangian description of plasma, Eulerian description of fields
• Physics can be added
• Time step limited by CFL condition: Δ𝑡 ≃ !"

#
à 3D (EM) PIC simulations of plasma acceleration are very expensive

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)
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Fast plasma acceleration simulations with quasistatic approximation

Plasma accelerator: 1 m (10,000x)

Wake: 100 𝜇m

Problem: the CFL condition limits the time step to ∆𝒕 < 𝒄∆𝒛

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Sharp features < 100 nm

𝑣! ≃ 𝑐
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Two main methods for larger time steps

Ø Boosted frame method [J.-L. Vay PRL 98, 130405 (2007)]
• Prone to Numerical Cherenkov Instability (NCI)
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“the fields 𝒂 and 𝝓 which drive the plasma are expected to change 
little during a transit time of the plasma through the laser pulse”

“Under the quasistatic approximation, the 𝜕/𝜕𝑧 derivatives may be 
neglected in the electron (fluid) equations”

[P. Sprangle et al., PRL 64, 17 (1990)]

Sharp features < 100 nm

𝑣! ≃ 𝑐
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Ø Compute plasma response (expensive)
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The plasma response is computed with a swipe from head to tile
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Gather fields
Ex

z

y

x
⊙

2D slice
Field & particles
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The plasma response is computed with a swipe from head to tile
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Gather fields
Ex

Push particles
Ex

Deposit densities
rho

Solve fields
Ex

z
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𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
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𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
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2D slice
Field & particles

Ø All PIC operations occur on the 2D transverse domain
Ø Plasma particles are advanced in 𝜁 (z), not in time
Ø (specific to HiPACE++: beams and lasers also advanced in the swipe)
Ø A simulation does 𝒏𝒕×𝒏𝒛 PIC iterations on domain 𝒏𝒙×𝒏𝒚
Ø (EM PIC: does 𝒏𝒕 PIC iterations on domain 𝒏𝒙×𝒏𝒚×𝒏𝒛)
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Recent advances improved accuracy of the field solver
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Source terms 𝝏𝜻𝒋𝒙/𝒚 are difficult to obtain

Ø predictor-corrector solver: the old one
• [Mora & T. Antonsen, Phys. Plasmas (1997), 

W. An et al., JCP (2013)]
• Not very stable

Ø explicit solver: the new one
• [T. Wang et al., Phys. Plasmas (2017), P. 

Baxevanis & G. Suakov, PRAB (2018), T. 
Wang, et al. PRAB 25.10 (2022)]

• Analytic integration of the source term
• Gives a screened Poisson equation, solved 

with multigrid solver

∇'(𝐵' −
𝑛∗

1 + 𝜓
𝐵' = − 𝑒" × 𝑆
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Wakefield particle Tracker [1]
Ø 2D (RZ) axisymmetric
Ø Particle beam or laser pulse drivers [2]
Ø Gridless model based on explicit solver [3]
Ø Python, open-source, openPMD

[1] A. Ferran Pousa et al., J. Phys.: Conf. Ser. (2019)
[2] C. Benedetti et al., PPCF 60 014002 (2018)
[3] P. Baxevanis and G. Stupakov, PRAB 21 (2018)

à Realistic multi-stage simulations within 
second/minutes on a laptop

https://github.com/AngelFP/Wake-T
https://wake-t.readthedocs.io

à Ask Ángel

https://github.com/AngelFP/Wake-T
https://wake-t.readthedocs.io/
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https://www.top500.org/lists/top500/2023/06/
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https://www.top500.org/lists/top500/2023/06/

Top500 33/50

Green500 46/50

Equipped with GPUs:
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Accelerated computing dominates supercomputing
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https://www.top500.org/lists/top500/2023/06/

Top500 33/50

Green500 46/50

Equipped with GPUs:

Ø GPUs meant for rendering, adopted by HPC

Ø Strong trend in HPC & scientific computing 
towards GPU (fast and energy-efficient)

Ø Trend driven by AI, here to stay
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Accelerated computing dominates supercomputing
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Ø What changes?
• Many slow cores à expose parallelism
• Modest memory available

Ø Performance-portability
• In particular GPU computing
• Portability layer (Kokkos, Alpaka, RAJA) C++

Ø Open Source & Open Repository
• Software can be freely used, modified and shared
• Encourages flexible, modular code
• Favor good dependency graph rather than duplication
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Ø What changes?
• Many slow cores à expose parallelism
• Modest memory available

Ø Performance-portability
• In particular GPU computing
• Portability layer (Kokkos, Alpaka, RAJA) C++

Ø Open Source & Open Repository
• Software can be freely used, modified and shared
• Encourages flexible, modular code
• Favor good dependency graph rather than duplication

CPU
for(int i=0; i<N; i++){

xp[i] += 1.;
}

GPU (CUDA)
kernel(int* xp) { 

int i = blockIdx.x *
blockDim.x
+ threadIdx.x;

if (i<N) xp[i] += 1.; }
kernel<<<N, 256>>>(xp);
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HiPACE++  – The Team

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Started mid-2020

Ø International project, open-source

Ø New contributors most welcome!

Severin DiederichsMaxence Thévenet
(lead)

Alexander Sinn Carlo BenedettiAxel Huebl Andrew Myers Weiqun ZhangRémi Lehe Jean-Luc Vay

Advanced algorithms and high-performance computing for fast and 
energy-efficient 3D simulations of plasma acceleration – for everyone

DESY – MPA LBNL – AMP
ECP project WarpX

LBNL – AMCR
Developers of AMReX

LBNL – BELLA
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HiPACE++  – The Code
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Ø Modern HPC standard
• Modern C++, Python for pre- and post-processing 
• Cmake build systems, supports various compilers (Clang, GCC, Intel)
• Open-source, documented, versioning system (1 per month), CI

Ø Built on strong libraries
• Build on AMReX – Adaptive Mesh Refinement at eXascale

for data structures & portability
• Build on openPMD-api for I/O

Ø Meant for inter-operability
• OpenPMD standard
• Shares the ecosystem with WarpX and others: 
• Beams and laser readers and writers

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io
S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)

Advanced algorithms and high-performance computing for fast and 
energy-efficient 3D simulations of plasma acceleration – for everyone

https://amrex-codes.github.io
https://github.com/openPMD/openPMD-api

amrex

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io/
https://amrex-codes.github.io/
https://github.com/openPMD/openPMD-api
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energy-efficient 3D simulations of plasma acceleration – for everyone

https://amrex-codes.github.io
https://github.com/openPMD/openPMD-api

amrex

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io/
https://amrex-codes.github.io/
https://github.com/openPMD/openPMD-api
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Ø Modern HPC standard
• Modern C++, Python for pre- and post-processing 
• Cmake build systems, supports various compilers (Clang, GCC, Intel)
• Open-source, documented, versioning system (1 per month), CI

Ø Built on strong libraries
• Build on AMReX – Adaptive Mesh Refinement at eXascale

for data structures & portability
• Build on openPMD-api for I/O

Ø Meant for inter-operability
• OpenPMD standard
• Shares the ecosystem with WarpX and others: 
• Beams and laser readers and writers

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io
S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)

Advanced algorithms and high-performance computing for fast and 
energy-efficient 3D simulations of plasma acceleration – for everyone

https://amrex-codes.github.io
https://github.com/openPMD/openPMD-api

See presentation by

Rémi Lehe (#3)

amrex
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https://hipace.readthedocs.io/
https://amrex-codes.github.io/
https://github.com/openPMD/openPMD-api
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Ø Physics
• Laser and particle beam drivers 
• Two unit systems (SI and normalized)
• Multi-physics (binary collisions, field ionization, radiation reaction)
• SALAME algorithm for automatic beam loading

Ø Numerics
• Single or double-precision
• Explicit solver (and predictor-corrector loop)
• Runs on various architectures (NVIDIA GPUs, AMD GPUs, most CPUs)

Used on laptops, gaming GPUs, LUMI, Perlmutter, JUWELS Booster, etc.
• Considerable speedup over CPU-only
• Builds on Linux, Windows, MacOS
• Adaptive time step
• In-situ diagnostics

Used in (a few) scientific publications
R. D’Arcy et al., Nature 603.7899 (2022)
S. Diederichs et al., PRAB 25.9 (2022)
S. Diederichs et al., Phys. Plasmas 29.4 (2022)
F. Peña et al., arXiv:2305.09581 (2023)

HiPACE++  – The Capabilities
Advanced algorithms and high-performance computing for fast and 

energy-efficient 3D simulations of plasma acceleration – for everyone

4 GPUs 1024 CPU cores
Runtime (seconds) 6 556
Cost (node-hours) 6 11900

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells 
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells 
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams 
with 106 beam particles each. The final run time is given for the maximum number 
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the 
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and 
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is 
the reference simulation setup from Sec. 4 with nsteps = 1000 time 
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time 
steps (for more details see the Appendix). The efficiency η is given 
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on 
i ranks. Due to the filling and emptying of the pipeline, the ideal 
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The 
results are shown in Fig. 6. The temporal domain decomposition 
(red lines) shows an efficiency close to the ideal pipeline scaling 
(black dashed line). The spatial decomposition (blue lines) suffers 
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also 
run on Summit (red dotted line), which is equipped with 6 NVIDIA 
V100 GPUs per node. The maximum number of ranks is chosen so 
that only 4 slices remain per sub-domain, which was the case at 
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for 
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the 
spatial decomposition even though it is at a disadvantage: due 
to performance enhancements unrelated to the parallelization, the 
absolute run time is reduced, causing the communications to take 
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of 
new numerical methods or physics packages. HiPACE++ uses the 
cross-platform build system CMake and can be installed, as well 
as its dependencies, with software package managers, such as 
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses 
the openPMD-api [47] for I/O, allowing for interoperability and 
simple benchmarking with other codes. Both HDF5 [48] and 
ADIOS2 [49] file formats are supported (a feature inherited from 

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of 
the witness beam presented in Sec. 4 with an initial transverse offset of the witness 
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error 
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam 
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are 
re-scaled to the plasma skin depth k−1

p , the fields to the cold, 
non-relativistic wave breaking limit E0, and all densities to the 
background plasma density n0. All operations are performed in 
the unit system chosen by the user. An advanced parser makes 
it possible to write the input file in a unit system and run the 
simulation in the other one, allowing to use the advantages of 
both unit systems (numerical accuracy, interoperability with other 
codes, convenience for multi-physics implementations, etc.) in a 
flexible manner.

The code can be compiled in either double (C++ double) or 
single (C++ float) precision, a feature inherited from AMReX. The 
effect of the precision on the simulation accuracy is investigated by 
comparing the evolution of the emittance of the witness beam of 
the reference setup with an initial emittance of εx,0 = 0 when an 
initial transverse offset of the bunch centroid xb = σx is present in 
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%) 
in normalized units (SI units) after 3000 time steps. As expected, 
the difference between single and double precision is higher for 
SI units than for normalized units, although both remain on the 
percent level.

Table 1 shows the runtime in single and double precisions 
for the two solvers on two different architectures, a cutting-edge 
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”) 
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC 
GPU than on the gaming GPU. However, with the capability to 
run high-resolution production simulations on a gaming GPU with 
comparable accuracy and performance as on an HPC GPU in single 
precision, HiPACE++ provides useful scalability from laptops to the 
largest supercomputers.

7
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Ø Physics
• Laser and particle beam drivers 
• Two unit systems (SI and normalized)
• Multi-physics (binary collisions, field ionization, radiation reaction)
• SALAME algorithm for automatic beam loading

Ø Numerics
• Single or double-precision
• Explicit solver (and predictor-corrector loop)
• Runs on various architectures (NVIDIA GPUs, AMD GPUs, most CPUs)

Used on laptops, gaming GPUs, LUMI, Perlmutter, JUWELS Booster, etc.
• Considerable speedup over CPU-only
• Builds on Linux, Windows, MacOS
• Adaptive time step
• In-situ diagnostics

Used in (a few) scientific publications
R. D’Arcy et al., Nature 603.7899 (2022)
S. Diederichs et al., PRAB 25.9 (2022)
S. Diederichs et al., Phys. Plasmas 29.4 (2022)
F. Peña et al., arXiv:2305.09581 (2023)

HiPACE++  – The Capabilities
Advanced algorithms and high-performance computing for fast and 

energy-efficient 3D simulations of plasma acceleration – for everyone

4 GPUs 1024 CPU cores
Runtime (seconds) 6 556
Cost (node-hours) 6 11900

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells 
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells 
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams 
with 106 beam particles each. The final run time is given for the maximum number 
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the 
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and 
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is 
the reference simulation setup from Sec. 4 with nsteps = 1000 time 
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time 
steps (for more details see the Appendix). The efficiency η is given 
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on 
i ranks. Due to the filling and emptying of the pipeline, the ideal 
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The 
results are shown in Fig. 6. The temporal domain decomposition 
(red lines) shows an efficiency close to the ideal pipeline scaling 
(black dashed line). The spatial decomposition (blue lines) suffers 
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also 
run on Summit (red dotted line), which is equipped with 6 NVIDIA 
V100 GPUs per node. The maximum number of ranks is chosen so 
that only 4 slices remain per sub-domain, which was the case at 
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for 
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the 
spatial decomposition even though it is at a disadvantage: due 
to performance enhancements unrelated to the parallelization, the 
absolute run time is reduced, causing the communications to take 
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of 
new numerical methods or physics packages. HiPACE++ uses the 
cross-platform build system CMake and can be installed, as well 
as its dependencies, with software package managers, such as 
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses 
the openPMD-api [47] for I/O, allowing for interoperability and 
simple benchmarking with other codes. Both HDF5 [48] and 
ADIOS2 [49] file formats are supported (a feature inherited from 

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of 
the witness beam presented in Sec. 4 with an initial transverse offset of the witness 
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error 
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam 
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are 
re-scaled to the plasma skin depth k−1

p , the fields to the cold, 
non-relativistic wave breaking limit E0, and all densities to the 
background plasma density n0. All operations are performed in 
the unit system chosen by the user. An advanced parser makes 
it possible to write the input file in a unit system and run the 
simulation in the other one, allowing to use the advantages of 
both unit systems (numerical accuracy, interoperability with other 
codes, convenience for multi-physics implementations, etc.) in a 
flexible manner.

The code can be compiled in either double (C++ double) or 
single (C++ float) precision, a feature inherited from AMReX. The 
effect of the precision on the simulation accuracy is investigated by 
comparing the evolution of the emittance of the witness beam of 
the reference setup with an initial emittance of εx,0 = 0 when an 
initial transverse offset of the bunch centroid xb = σx is present in 
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%) 
in normalized units (SI units) after 3000 time steps. As expected, 
the difference between single and double precision is higher for 
SI units than for normalized units, although both remain on the 
percent level.

Table 1 shows the runtime in single and double precisions 
for the two solvers on two different architectures, a cutting-edge 
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”) 
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC 
GPU than on the gaming GPU. However, with the capability to 
run high-resolution production simulations on a gaming GPU with 
comparable accuracy and performance as on an HPC GPU in single 
precision, HiPACE++ provides useful scalability from laptops to the 
largest supercomputers.
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Quasi-static PIC is well-suited for GPU computing
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Ø Massive parallelism: Particle-in-cell can be ported efficiently to GPU
• PIConGPU (HZDR, Germany), WarpX (LBNL, USA)
• > millions of cells and particles
• Main challenge: particle-grid exchanges

Ø Modest high-bandwidth memory: Only 1 slice in device memory
• In reality, currently full particle driver
• High transverse resolution (8000() on a single GPU à no comms
• Parallelization in longitudinal direction

GPU

80 GB

CPU

1 TB

In principle, only the current 
slice (laser, beam, plasma, 
fields) need to be in GPU 
memory

Compute node

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU
GPU (device)

CPU (host)
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Parallelization: the new (old?) pipeline algorithm
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Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU
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Parallelization: the new (old?) pipeline algorithm
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Send lasers and beams 
in this sub-domain

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU
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Ø S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 3. Performance comparison between GPU and CPU, for the same setup as 
Sec. 4 for a single time step with medium (512 × 512 × 1024 cells, blue lines) 
and high (2048 × 2048 × 1024 cells, red lines) resolutions, with predictor-corrector 
field solver) on the JUWELS Booster. Simulations on CPU used HiPACE (MPI-parallel, 
dashed lines) and HiPACE++ (OpenMP-parallel, dotted line). Simulations on GPU 
used HiPACE++. The high resolution run with HiPACE does not fit on less than 16 
nodes on CPU.

and fields on the grid. Due to the relatively small size of beam 
data, the amount of data virtually depends only on the transverse 
number of cells. For example, the total allocated data on the global 
memory of a NVIDIA A100 GPU with the explicit solver (respec-
tively predictor-corrector method) with 2 million beam particles 
(accounting for ∼ 230 MB) and 1 particle per cell for the plasma 
electrons is 2.0 GB (resp. 2.0 GB) for a problem of 128 × 128 cells 
transversely, 2.9 GB (resp. 2.6 GB) for a 1024 × 1024 problem and 
19.2 GB (resp. 12.9 GB) for a 4096 × 4096 problem size (for de-
tails on all simulation parameters see the Appendix). Therefore, 
most practical problems fit on a single GPU, and the performance 
of HiPACE++ on a single NVIDIA A100 GPU is detailed below.

The benefit of fitting the problem on a single GPU is clearly 
demonstrated in Fig. 3. Typical CPU implementations of the 3D 
QSA PIC method [22,39,21] accelerate the calculation by decom-
posing the domain transversely, resulting in large amounts of com-
munications (in particular in the Poisson solver) that dominate the 
runtime and cause non-ideal scaling. The CPU runs used only the 
48 CPU cores on the nodes of the JUWELS Booster. The GPU runs 
also used the 4 GPUs. The CPU runs were parallelized in the trans-
verse direction only. Longitudinal parallelization is an orthogonal 
problem, and is done in the exact same way on CPU and GPU 
(see Sec. 5.2). On GPU, the simulations at medium and high resolu-
tions take 3.6 sec and 22.9 sec and cost 2.5 × 10−4 node-hours and 
1.6 × 10−3 node-hours, respectively. For the same simulations us-
ing 1024 cores on CPU, HiPACE requires 17.5 sec and 556.1 sec for 
a cost of 0.10 node-hours and 3.3 node-hours. At medium resolu-
tion, the run on 1 (1024) CPU cores was 145× (4.7×) slower and 
cost 12× (630×) more node-hours than on 1 GPU. At high resolu-
tion, the run on 16 (1024) CPU cores was 197× (24×) slower and 
cost 261× (2050×) more node-hours than on 1 GPU. The number 
of node-hours was calculated as [number of CPU cores]/48 for CPU 
runs, and [number of GPUs]/4 for GPU runs, as each node has 48 
CPU cores and 4 GPUs.

For CPU computing with no hardware accelerator, shared-
memory parallelization with OpenMP is implemented to enable 
transverse parallelization when running on CPU only. In that case, 
tiling is implemented for plasma particle operations (field gather, 
particle push and current deposition), and the threaded version 
of FFTW can be called. As shown by the dotted line in Fig. 3, 
the transverse OpenMP parallelization of HiPACE++ gives a simi-
lar scaling as the pure MPI transverse parallelization of the legacy 
code HiPACE up to 16 threads (running on 16 cores of the 24-core 
JUWELS Booster CPUs). We attribute the performance improve-
ment of HiPACE++ over HiPACE to better memory handling, but 

Fig. 4. Runtime for different transverse resolutions on (a) NVIDIA A100 GPUs and 
(b) a single Graphics Compute Die (GCD) of an AMD Instinct MI250X. Left bars: 
using the predictor-corrector loop. Right bars: using the explicit field solver. The 
runtimes of 1024 × 1024 for AMD Instinct MI250X only, 2048 × 2048 and 4096 ×
4096 transverse grid points are plotted on a separate y-axis to improve readability 
of the figure.

detailed profiling of the legacy code HiPACE is out of scope of this 
article.

For further insight into the performance of HiPACE++, we ran 
the reference setup presented in Sec. 4 with increasing transverse 
resolution, keeping all other parameters constant (for more details 
see the Appendix). This scan uses 1024 longitudinal grid points, 
and performance data is given for both the predictor-corrector loop 
and the explicit field solver. The predictor-corrector loop used up 
to 5 iterations, which typically yields a comparable level of conver-
gence between the two solvers in standard beam-driven plasma 
accelerator scenarios. We observed that the explicit solver con-
verges faster than the predictor-corrector loop in challenging sim-
ulation settings, such as large transverse box sizes or abrupt beam 
current spikes.

The most time-consuming functions of the two solvers on an 
NVIDIA A100 are shown in Fig. 4 (a). In both cases a vast majority 
of the time is spent in solving for Bx/y . While both the fast Pois-
son solver and particle operations dominate the predictor-corrector 
solver at different resolutions, the multigrid solver is always the 
most expensive operation for the explicit solver. As a reminder, 
each iteration in the predictor-corrector loop involves all PIC oper-
ations for the plasma particles (field gather, particle push, current 
deposition and field solve) repeated up to 5 times per slice. Note 
that this study is not a comparison of the two field solvers, as they 
have different convergence properties, but rather a performance 
analysis of each solver separately.

The performance portability of HiPACE++ on ROCm-capable 
AMD GPUs is demonstrated by running the transverse scaling on 
a single Graphics Compute Die (GCD) of an AMD Instinct MI250X, 
shown in Fig. 4 (b). The scan was performed on the early-access 
test system Crusher at the Oak Ridge Leadership Facility, which is 
equipped with a 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPY-
C” CPU and four AMD Instinct MI250X. Each MI250X contains two 
GCDs, which can be viewed as two separate GPUs from a program-

5

Ø Good scaling, good performance and AMD and NVIDIA GPUs
Ø Relatively old tests, significant speedup since then

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells 
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells 
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams 
with 106 beam particles each. The final run time is given for the maximum number 
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the 
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and 
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is 
the reference simulation setup from Sec. 4 with nsteps = 1000 time 
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time 
steps (for more details see the Appendix). The efficiency η is given 
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on 
i ranks. Due to the filling and emptying of the pipeline, the ideal 
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The 
results are shown in Fig. 6. The temporal domain decomposition 
(red lines) shows an efficiency close to the ideal pipeline scaling 
(black dashed line). The spatial decomposition (blue lines) suffers 
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also 
run on Summit (red dotted line), which is equipped with 6 NVIDIA 
V100 GPUs per node. The maximum number of ranks is chosen so 
that only 4 slices remain per sub-domain, which was the case at 
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for 
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the 
spatial decomposition even though it is at a disadvantage: due 
to performance enhancements unrelated to the parallelization, the 
absolute run time is reduced, causing the communications to take 
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of 
new numerical methods or physics packages. HiPACE++ uses the 
cross-platform build system CMake and can be installed, as well 
as its dependencies, with software package managers, such as 
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses 
the openPMD-api [47] for I/O, allowing for interoperability and 
simple benchmarking with other codes. Both HDF5 [48] and 
ADIOS2 [49] file formats are supported (a feature inherited from 

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of 
the witness beam presented in Sec. 4 with an initial transverse offset of the witness 
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error 
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam 
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are 
re-scaled to the plasma skin depth k−1

p , the fields to the cold, 
non-relativistic wave breaking limit E0, and all densities to the 
background plasma density n0. All operations are performed in 
the unit system chosen by the user. An advanced parser makes 
it possible to write the input file in a unit system and run the 
simulation in the other one, allowing to use the advantages of 
both unit systems (numerical accuracy, interoperability with other 
codes, convenience for multi-physics implementations, etc.) in a 
flexible manner.

The code can be compiled in either double (C++ double) or 
single (C++ float) precision, a feature inherited from AMReX. The 
effect of the precision on the simulation accuracy is investigated by 
comparing the evolution of the emittance of the witness beam of 
the reference setup with an initial emittance of εx,0 = 0 when an 
initial transverse offset of the bunch centroid xb = σx is present in 
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%) 
in normalized units (SI units) after 3000 time steps. As expected, 
the difference between single and double precision is higher for 
SI units than for normalized units, although both remain on the 
percent level.

Table 1 shows the runtime in single and double precisions 
for the two solvers on two different architectures, a cutting-edge 
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”) 
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC 
GPU than on the gaming GPU. However, with the capability to 
run high-resolution production simulations on a gaming GPU with 
comparable accuracy and performance as on an HPC GPU in single 
precision, HiPACE++ provides useful scalability from laptops to the 
largest supercomputers.
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Fig. 3. Performance comparison between GPU and CPU, for the same setup as 
Sec. 4 for a single time step with medium (512 × 512 × 1024 cells, blue lines) 
and high (2048 × 2048 × 1024 cells, red lines) resolutions, with predictor-corrector 
field solver) on the JUWELS Booster. Simulations on CPU used HiPACE (MPI-parallel, 
dashed lines) and HiPACE++ (OpenMP-parallel, dotted line). Simulations on GPU 
used HiPACE++. The high resolution run with HiPACE does not fit on less than 16 
nodes on CPU.

and fields on the grid. Due to the relatively small size of beam 
data, the amount of data virtually depends only on the transverse 
number of cells. For example, the total allocated data on the global 
memory of a NVIDIA A100 GPU with the explicit solver (respec-
tively predictor-corrector method) with 2 million beam particles 
(accounting for ∼ 230 MB) and 1 particle per cell for the plasma 
electrons is 2.0 GB (resp. 2.0 GB) for a problem of 128 × 128 cells 
transversely, 2.9 GB (resp. 2.6 GB) for a 1024 × 1024 problem and 
19.2 GB (resp. 12.9 GB) for a 4096 × 4096 problem size (for de-
tails on all simulation parameters see the Appendix). Therefore, 
most practical problems fit on a single GPU, and the performance 
of HiPACE++ on a single NVIDIA A100 GPU is detailed below.

The benefit of fitting the problem on a single GPU is clearly 
demonstrated in Fig. 3. Typical CPU implementations of the 3D 
QSA PIC method [22,39,21] accelerate the calculation by decom-
posing the domain transversely, resulting in large amounts of com-
munications (in particular in the Poisson solver) that dominate the 
runtime and cause non-ideal scaling. The CPU runs used only the 
48 CPU cores on the nodes of the JUWELS Booster. The GPU runs 
also used the 4 GPUs. The CPU runs were parallelized in the trans-
verse direction only. Longitudinal parallelization is an orthogonal 
problem, and is done in the exact same way on CPU and GPU 
(see Sec. 5.2). On GPU, the simulations at medium and high resolu-
tions take 3.6 sec and 22.9 sec and cost 2.5 × 10−4 node-hours and 
1.6 × 10−3 node-hours, respectively. For the same simulations us-
ing 1024 cores on CPU, HiPACE requires 17.5 sec and 556.1 sec for 
a cost of 0.10 node-hours and 3.3 node-hours. At medium resolu-
tion, the run on 1 (1024) CPU cores was 145× (4.7×) slower and 
cost 12× (630×) more node-hours than on 1 GPU. At high resolu-
tion, the run on 16 (1024) CPU cores was 197× (24×) slower and 
cost 261× (2050×) more node-hours than on 1 GPU. The number 
of node-hours was calculated as [number of CPU cores]/48 for CPU 
runs, and [number of GPUs]/4 for GPU runs, as each node has 48 
CPU cores and 4 GPUs.

For CPU computing with no hardware accelerator, shared-
memory parallelization with OpenMP is implemented to enable 
transverse parallelization when running on CPU only. In that case, 
tiling is implemented for plasma particle operations (field gather, 
particle push and current deposition), and the threaded version 
of FFTW can be called. As shown by the dotted line in Fig. 3, 
the transverse OpenMP parallelization of HiPACE++ gives a simi-
lar scaling as the pure MPI transverse parallelization of the legacy 
code HiPACE up to 16 threads (running on 16 cores of the 24-core 
JUWELS Booster CPUs). We attribute the performance improve-
ment of HiPACE++ over HiPACE to better memory handling, but 

Fig. 4. Runtime for different transverse resolutions on (a) NVIDIA A100 GPUs and 
(b) a single Graphics Compute Die (GCD) of an AMD Instinct MI250X. Left bars: 
using the predictor-corrector loop. Right bars: using the explicit field solver. The 
runtimes of 1024 × 1024 for AMD Instinct MI250X only, 2048 × 2048 and 4096 ×
4096 transverse grid points are plotted on a separate y-axis to improve readability 
of the figure.

detailed profiling of the legacy code HiPACE is out of scope of this 
article.

For further insight into the performance of HiPACE++, we ran 
the reference setup presented in Sec. 4 with increasing transverse 
resolution, keeping all other parameters constant (for more details 
see the Appendix). This scan uses 1024 longitudinal grid points, 
and performance data is given for both the predictor-corrector loop 
and the explicit field solver. The predictor-corrector loop used up 
to 5 iterations, which typically yields a comparable level of conver-
gence between the two solvers in standard beam-driven plasma 
accelerator scenarios. We observed that the explicit solver con-
verges faster than the predictor-corrector loop in challenging sim-
ulation settings, such as large transverse box sizes or abrupt beam 
current spikes.

The most time-consuming functions of the two solvers on an 
NVIDIA A100 are shown in Fig. 4 (a). In both cases a vast majority 
of the time is spent in solving for Bx/y . While both the fast Pois-
son solver and particle operations dominate the predictor-corrector 
solver at different resolutions, the multigrid solver is always the 
most expensive operation for the explicit solver. As a reminder, 
each iteration in the predictor-corrector loop involves all PIC oper-
ations for the plasma particles (field gather, particle push, current 
deposition and field solve) repeated up to 5 times per slice. Note 
that this study is not a comparison of the two field solvers, as they 
have different convergence properties, but rather a performance 
analysis of each solver separately.

The performance portability of HiPACE++ on ROCm-capable 
AMD GPUs is demonstrated by running the transverse scaling on 
a single Graphics Compute Die (GCD) of an AMD Instinct MI250X, 
shown in Fig. 4 (b). The scan was performed on the early-access 
test system Crusher at the Oak Ridge Leadership Facility, which is 
equipped with a 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPY-
C” CPU and four AMD Instinct MI250X. Each MI250X contains two 
GCDs, which can be viewed as two separate GPUs from a program-
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Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells 
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells 
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams 
with 106 beam particles each. The final run time is given for the maximum number 
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the 
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and 
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is 
the reference simulation setup from Sec. 4 with nsteps = 1000 time 
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time 
steps (for more details see the Appendix). The efficiency η is given 
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on 
i ranks. Due to the filling and emptying of the pipeline, the ideal 
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The 
results are shown in Fig. 6. The temporal domain decomposition 
(red lines) shows an efficiency close to the ideal pipeline scaling 
(black dashed line). The spatial decomposition (blue lines) suffers 
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also 
run on Summit (red dotted line), which is equipped with 6 NVIDIA 
V100 GPUs per node. The maximum number of ranks is chosen so 
that only 4 slices remain per sub-domain, which was the case at 
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for 
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the 
spatial decomposition even though it is at a disadvantage: due 
to performance enhancements unrelated to the parallelization, the 
absolute run time is reduced, causing the communications to take 
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of 
new numerical methods or physics packages. HiPACE++ uses the 
cross-platform build system CMake and can be installed, as well 
as its dependencies, with software package managers, such as 
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses 
the openPMD-api [47] for I/O, allowing for interoperability and 
simple benchmarking with other codes. Both HDF5 [48] and 
ADIOS2 [49] file formats are supported (a feature inherited from 

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of 
the witness beam presented in Sec. 4 with an initial transverse offset of the witness 
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error 
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam 
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are 
re-scaled to the plasma skin depth k−1

p , the fields to the cold, 
non-relativistic wave breaking limit E0, and all densities to the 
background plasma density n0. All operations are performed in 
the unit system chosen by the user. An advanced parser makes 
it possible to write the input file in a unit system and run the 
simulation in the other one, allowing to use the advantages of 
both unit systems (numerical accuracy, interoperability with other 
codes, convenience for multi-physics implementations, etc.) in a 
flexible manner.

The code can be compiled in either double (C++ double) or 
single (C++ float) precision, a feature inherited from AMReX. The 
effect of the precision on the simulation accuracy is investigated by 
comparing the evolution of the emittance of the witness beam of 
the reference setup with an initial emittance of εx,0 = 0 when an 
initial transverse offset of the bunch centroid xb = σx is present in 
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%) 
in normalized units (SI units) after 3000 time steps. As expected, 
the difference between single and double precision is higher for 
SI units than for normalized units, although both remain on the 
percent level.

Table 1 shows the runtime in single and double precisions 
for the two solvers on two different architectures, a cutting-edge 
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”) 
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC 
GPU than on the gaming GPU. However, with the capability to 
run high-resolution production simulations on a gaming GPU with 
comparable accuracy and performance as on an HPC GPU in single 
precision, HiPACE++ provides useful scalability from laptops to the 
largest supercomputers.
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// Provided proper environment

> git clone https://github.com/Hi-PACE/hipace.git

> git checkout v23.05

> cmake -S . -B build -DHiPACE_COMPUTE=CUDA

> cmake --build build -j 16

> ./build/bin/hipace inputs

> mpirun –np 4 ./build/bin/hipace inputs

max_step = 300
amr.n_cell = 1024 1024 1024
amr.max_level = 0
hipace.max_time = 0.3/clight
diagnostic.output_period = 1
hipace.dt = adaptive

geometry.is_periodic = true true false
geometry.prob_lo = -250.e-6 -250.e-6 -250.e-6
geometry.prob_hi = 250.e-6 250.e-6 110.e-6

beams.names = driver
driver.position_mean = 0. 0. 0.
driver.position_std = 2.e-6 2.e-6 30.e-6
driver.injection_type = fixed_weight
driver.num_particles = 1000000
driver.total_charge = .6e-9
driver.u_mean = 0. 0. 1000.
driver.u_std = 2. 2. 10.
driver.do_symmetrize = 1

plasmas.names = electron
electron.density(x,y,z) = 2.e22
electron.ppc = 1 1
electron.u_mean = 0.0 0.0 0.
electron.element = electron

diagnostic.diag_type = xz

inputs

https://hipace.readthedocs.io/en/latest/run/get_started.html
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Code usage (illustration)
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// Provided proper environment

> git clone https://github.com/Hi-PACE/hipace.git

> git checkout v23.05

> cmake -S . -B build -DHiPACE_COMPUTE=CUDA

> cmake --build build -j 16

> ./build/bin/hipace inputs

> mpirun –np 4 ./build/bin/hipace inputs

max_step = 300
amr.n_cell = 1024 1024 1024
amr.max_level = 0
hipace.max_time = 0.3/clight
diagnostic.output_period = 1
hipace.dt = adaptive

geometry.is_periodic = true true false
geometry.prob_lo = -250.e-6 -250.e-6 -250.e-6
geometry.prob_hi = 250.e-6 250.e-6 110.e-6

beams.names = driver
driver.position_mean = 0. 0. 0.
driver.position_std = 2.e-6 2.e-6 30.e-6
driver.injection_type = fixed_weight
driver.num_particles = 1000000
driver.total_charge = .6e-9
driver.u_mean = 0. 0. 1000.
driver.u_std = 2. 2. 10.
driver.do_symmetrize = 1

plasmas.names = electron
electron.density(x,y,z) = 2.e22
electron.ppc = 1 1
electron.u_mean = 0.0 0.0 0.
electron.element = electron

diagnostic.diag_type = xz

inputs

https://hipace.readthedocs.io/en/latest/run/get_started.html
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Ø HiPACE++: 3D, QS PIC for plasma acceleration

Ø Advanced methods (pipeline, MG)

Ø HPC (GPU) computing

Ø Open-source, documented

Ø New contributors are welcome!

Perspective
Ø More physics added

Ø Goals:

multi-stage collider-relevant parameters

Target new physics problems

Ø Advanced algorithms (MR)

Ø Enjoy the workshop!
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