
HiPACE++: presentation of the code

Maxence Thévenet – DESY

MPA – plasma acceleration

Page 2

Plasma acceleration is described by kinetic plasma dynamics

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 3

Plasma acceleration is described by kinetic plasma dynamics

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 4

Plasma acceleration is described by kinetic plasma dynamics

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 5

Plasma acceleration is described by kinetic plasma dynamics

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 6

Plasma acceleration is described by kinetic plasma dynamics

Regular mesh
Macroparticles

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

• Lagrangian description of plasma, Eulerian description of fields
• Physics can be added
• Time step limited by CFL condition: Δ𝑡 ≃ !"

#
à 3D (EM) PIC simulations of plasma acceleration are very expensive

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 7

Fast plasma acceleration simulations with quasistatic approximation

Plasma accelerator: 1 m (10,000x)

Wake: 100 𝜇m

Problem: the CFL condition limits the time step to ∆𝒕 < 𝒄∆𝒛

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Sharp features < 100 nm

𝑣! ≃ 𝑐

Page 8

Fast plasma acceleration simulations with quasistatic approximation

Plasma accelerator: 1 m (10,000x)

Wake: 100 𝜇m

Two main methods for larger time steps

Ø Boosted frame method [J.-L. Vay PRL 98, 130405 (2007)]
• Prone to Numerical Cherenkov Instability (NCI)
• Mitigation methods exist [R. Lehe et al., PRE 94 (2016), M.

Kirchen et al., Phys. Plasmas 23 (2016), A. Pukhov JCP 418 (2020)]

Problem: the CFL condition limits the time step to ∆𝒕 < 𝒄∆𝒛

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Sharp features < 100 nm

𝑣! ≃ 𝑐

Page 9

Fast plasma acceleration simulations with quasistatic approximation

Plasma accelerator: 1 m (10,000x)

Wake: 100 𝜇m

Ø Quasi-static particle-in-cell
• Beam & wake: 𝒗 ~ 𝑐𝒆𝒛
• Quasi-static approximation
à No CFL condition, large time step for the beam
à Cannot capture injection

Two main methods for larger time steps

Ø Boosted frame method [J.-L. Vay PRL 98, 130405 (2007)]
• Prone to Numerical Cherenkov Instability (NCI)
• Mitigation methods exist [R. Lehe et al., PRE 94 (2016), M.

Kirchen et al., Phys. Plasmas 23 (2016), A. Pukhov JCP 418 (2020)]

Problem: the CFL condition limits the time step to ∆𝒕 < 𝒄∆𝒛

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Sharp features < 100 nm

𝑣! ≃ 𝑐

Page 10

Fast plasma acceleration simulations with quasistatic approximation

Plasma accelerator: 1 m (10,000x)

Wake: 100 𝜇m

Ø Quasi-static particle-in-cell
• Beam & wake: 𝒗 ~ 𝑐𝒆𝒛
• Quasi-static approximation
à No CFL condition, large time step for the beam
à Cannot capture injection

Two main methods for larger time steps

Ø Boosted frame method [J.-L. Vay PRL 98, 130405 (2007)]
• Prone to Numerical Cherenkov Instability (NCI)
• Mitigation methods exist [R. Lehe et al., PRE 94 (2016), M.

Kirchen et al., Phys. Plasmas 23 (2016), A. Pukhov JCP 418 (2020)]

Problem: the CFL condition limits the time step to ∆𝒕 < 𝒄∆𝒛

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

“the fields 𝒂 and 𝝓 which drive the plasma are expected to change
little during a transit time of the plasma through the laser pulse”

“Under the quasistatic approximation, the 𝜕/𝜕𝑧 derivatives may be
neglected in the electron (fluid) equations”

[P. Sprangle et al., PRL 64, 17 (1990)]

Sharp features < 100 nm

𝑣! ≃ 𝑐

Page 11

Fast plasma acceleration simulations with quasistatic approximation

Plasma accelerator: 1 m (10,000x)

Wake: 100 𝜇m

Ø Quasi-static particle-in-cell
• Beam & wake: 𝒗 ~ 𝑐𝒆𝒛
• Quasi-static approximation
à No CFL condition, large time step for the beam
à Cannot capture injection

Two main methods for larger time steps

Ø Boosted frame method [J.-L. Vay PRL 98, 130405 (2007)]
• Prone to Numerical Cherenkov Instability (NCI)
• Mitigation methods exist [R. Lehe et al., PRE 94 (2016), M.

Kirchen et al., Phys. Plasmas 23 (2016), A. Pukhov JCP 418 (2020)]

Problem: the CFL condition limits the time step to ∆𝒕 < 𝒄∆𝒛

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

∇"#𝜓 = −
1
𝜖$

𝜌 −
1
𝑐
𝑗%

𝐸& − 𝑐 𝐵' = −𝜕&𝜓

𝐸' + 𝑐 𝐵& = −𝜕'𝜓

∇"#𝐸% = 𝑐𝜇$ 𝜕&𝑗& + 𝜕'𝑗'

∇"#𝐵& = 𝜇$ −𝜕'𝑗% + 𝜕(𝑗'

∇"#𝐵' = 𝜇$ 𝜕&𝑗% − 𝜕(𝑗&

∇"#𝐵% = 𝜇$ 𝜕'𝑗& − 𝜕&𝑗'

Sharp features < 100 nm

𝑣! ≃ 𝑐

Page 12

In QS PIC, plasma and laser/particle beams are treated differently

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 13

In QS PIC, plasma and laser/particle beams are treated differently

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Compute plasma response (expensive)

Page 14

In QS PIC, plasma and laser/particle beams are treated differently

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Large Δ𝑡 ≫ Δ𝑧/𝑐

Ø Compute plasma response (expensive)

Ø Advance laser and beams with large Δt (cheap)

Page 15

In QS PIC, plasma and laser/particle beams are treated differently

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Compute plasma response (expensive)

Ø Advance laser and beams with large Δt (cheap)

Page 16

In QS PIC, plasma and laser/particle beams are treated differently

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Large Δ𝑡 ≫ Δ𝑧/𝑐

Ø Compute plasma response (expensive)

Ø Advance laser and beams with large Δt (cheap)

Page 17

In QS PIC, plasma and laser/particle beams are treated differently

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Compute plasma response (expensive)

Ø Advance laser and beams with large Δt (cheap)

Page 18

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

z

y

x
⊙

2D slice
Field & particles

Page 19

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Page 20

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Page 21

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Page 22

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

Push particles
Ex

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Page 23

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

Push particles
Ex

Deposit densities
rho

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Page 24

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

Push particles
Ex

Deposit densities
rho

Solve fields
Ex

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Page 25

The plasma response is computed with a swipe from head to tile

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Gather fields
Ex

Push particles
Ex

Deposit densities
rho

Solve fields
Ex

z

y

x
⊙

Push particles
𝑥, 𝑣 = 𝑓(𝐸, 𝐵)

Deposit currents
𝐽 = 𝑓(𝑥, 𝑣)

Solve fields
𝐸, 𝐵 = 𝑓(𝐽)

Gather fields
𝐸, 𝐵 = 𝑓(𝐸, 𝐵)

2D slice
Field & particles

Ø All PIC operations occur on the 2D transverse domain
Ø Plasma particles are advanced in 𝜁 (z), not in time
Ø (specific to HiPACE++: beams and lasers also advanced in the swipe)
Ø A simulation does 𝒏𝒕×𝒏𝒛 PIC iterations on domain 𝒏𝒙×𝒏𝒚
Ø (EM PIC: does 𝒏𝒕 PIC iterations on domain 𝒏𝒙×𝒏𝒚×𝒏𝒛)

Page 26

Recent advances improved accuracy of the field solver

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

∇"#𝜓 = −
1
𝜖$

𝜌 −
1
𝑐
𝑗%

𝐸& − 𝑐 𝐵' = −𝜕&𝜓

𝐸' + 𝑐 𝐵& = −𝜕'𝜓

∇"#𝐸% = 𝑐𝜇$ 𝜕&𝑗& + 𝜕'𝑗'

∇"#𝐵& = 𝜇$ −𝜕'𝑗% + 𝜕(𝑗'

∇"#𝐵' = 𝜇$ 𝜕&𝑗% − 𝜕(𝑗&

∇"#𝐵% = 𝜇$ 𝜕'𝑗& − 𝜕&𝑗'

Page 27

Recent advances improved accuracy of the field solver

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

∇"#𝜓 = −
1
𝜖$

𝜌 −
1
𝑐
𝑗%

𝐸& − 𝑐 𝐵' = −𝜕&𝜓

𝐸' + 𝑐 𝐵& = −𝜕'𝜓

∇"#𝐸% = 𝑐𝜇$ 𝜕&𝑗& + 𝜕'𝑗'

∇"#𝐵& = 𝜇$ −𝜕'𝑗% + 𝜕(𝑗'

∇"#𝐵' = 𝜇$ 𝜕&𝑗% − 𝜕(𝑗&

∇"#𝐵% = 𝜇$ 𝜕'𝑗& − 𝜕&𝑗'

Source terms 𝝏𝜻𝒋𝒙/𝒚 are difficult to obtain

Ø predictor-corrector solver: the old one
• [Mora & T. Antonsen, Phys. Plasmas (1997),

W. An et al., JCP (2013)]
• Not very stable

Ø explicit solver: the new one
• [T. Wang et al., Phys. Plasmas (2017), P.

Baxevanis & G. Suakov, PRAB (2018), T.
Wang, et al. PRAB 25.10 (2022)]

• Analytic integration of the source term
• Gives a screened Poisson equation, solved

with multigrid solver

∇'(𝐵' −
𝑛∗

1 + 𝜓
𝐵' = − 𝑒" × 𝑆

Page 28

Recent advances improved accuracy of the field solver

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

∇"#𝜓 = −
1
𝜖$

𝜌 −
1
𝑐
𝑗%

𝐸& − 𝑐 𝐵' = −𝜕&𝜓

𝐸' + 𝑐 𝐵& = −𝜕'𝜓

∇"#𝐸% = 𝑐𝜇$ 𝜕&𝑗& + 𝜕'𝑗'

∇"#𝐵& = 𝜇$ −𝜕'𝑗% + 𝜕(𝑗'

∇"#𝐵' = 𝜇$ 𝜕&𝑗% − 𝜕(𝑗&

∇"#𝐵% = 𝜇$ 𝜕'𝑗& − 𝜕&𝑗'

Source terms 𝝏𝜻𝒋𝒙/𝒚 are difficult to obtain

Ø predictor-corrector solver: the old one
• [Mora & T. Antonsen, Phys. Plasmas (1997),

W. An et al., JCP (2013)]
• Not very stable

Ø explicit solver: the new one
• [T. Wang et al., Phys. Plasmas (2017), P.

Baxevanis & G. Suakov, PRAB (2018), T.
Wang, et al. PRAB 25.10 (2022)]

• Analytic integration of the source term
• Gives a screened Poisson equation, solved

with multigrid solver

∇'(𝐵' −
𝑛∗

1 + 𝜓
𝐵' = − 𝑒" × 𝑆

Wakefield particle Tracker [1]
Ø 2D (RZ) axisymmetric
Ø Particle beam or laser pulse drivers [2]
Ø Gridless model based on explicit solver [3]
Ø Python, open-source, openPMD

[1] A. Ferran Pousa et al., J. Phys.: Conf. Ser. (2019)
[2] C. Benedetti et al., PPCF 60 014002 (2018)
[3] P. Baxevanis and G. Stupakov, PRAB 21 (2018)

à Realistic multi-stage simulations within
second/minutes on a laptop

https://github.com/AngelFP/Wake-T
https://wake-t.readthedocs.io

à Ask Ángel

https://github.com/AngelFP/Wake-T
https://wake-t.readthedocs.io/

Page 29

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

https://www.top500.org/lists/top500/2023/06/

Page 30

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

https://www.top500.org/lists/top500/2023/06/

Top500 33/50

Green500 46/50

Equipped with GPUs:

Page 31

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

https://www.top500.org/lists/top500/2023/06/

Top500 33/50

Green500 46/50

Equipped with GPUs:

Ø GPUs meant for rendering, adopted by HPC

Ø Strong trend in HPC & scientific computing
towards GPU (fast and energy-efficient)

Ø Trend driven by AI, here to stay

Page 32

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 33

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 34

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø What changes?
• Many slow cores à expose parallelism
• Modest memory available

Ø Performance-portability
• In particular GPU computing
• Portability layer (Kokkos, Alpaka, RAJA) C++

Ø Open Source & Open Repository
• Software can be freely used, modified and shared
• Encourages flexible, modular code
• Favor good dependency graph rather than duplication

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 35

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø What changes?
• Many slow cores à expose parallelism
• Modest memory available

Ø Performance-portability
• In particular GPU computing
• Portability layer (Kokkos, Alpaka, RAJA) C++

Ø Open Source & Open Repository
• Software can be freely used, modified and shared
• Encourages flexible, modular code
• Favor good dependency graph rather than duplication

CPU
for(int i=0; i<N; i++){

xp[i] += 1.;
}

GPU (CUDA)
kernel(int* xp) {

int i = blockIdx.x *
blockDim.x
+ threadIdx.x;

if (i<N) xp[i] += 1.; }
kernel<<<N, 256>>>(xp);

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 36

Accelerated computing dominates supercomputing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø What changes?
• Many slow cores à expose parallelism
• Modest memory available

Ø Performance-portability
• In particular GPU computing
• Portability layer (Kokkos, Alpaka, RAJA) C++

Ø Open Source & Open Repository
• Software can be freely used, modified and shared
• Encourages flexible, modular code
• Favor good dependency graph rather than duplication

Any platform
ParallelFor(N,

[=] (int i) {
xp[i] += 1.;

}
);

…

CPU
for(int i=0; i<N; i++){

xp[i] += 1.;
}

GPU (CUDA)
kernel(int* xp) {

int i = blockIdx.x *
blockDim.x
+ threadIdx.x;

if (i<N) xp[i] += 1.; }
kernel<<<N, 256>>>(xp);

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 17

Compute node

Accelerated computing dominates supercomputing

Maxence Thévenet, DESY DESY-TEMF meeting 26/04/2023

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU

Page 37

HiPACE++ – The Team

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Started mid-2020

Ø International project, open-source

Ø New contributors most welcome!

Severin DiederichsMaxence Thévenet
(lead)

Alexander Sinn Carlo BenedettiAxel Huebl Andrew Myers Weiqun ZhangRémi Lehe Jean-Luc Vay

Advanced algorithms and high-performance computing for fast and
energy-efficient 3D simulations of plasma acceleration – for everyone

DESY – MPA LBNL – AMP
ECP project WarpX

LBNL – AMCR
Developers of AMReX

LBNL – BELLA

Page 38

HiPACE++ – The Code

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Modern HPC standard
• Modern C++, Python for pre- and post-processing
• Cmake build systems, supports various compilers (Clang, GCC, Intel)
• Open-source, documented, versioning system (1 per month), CI

Ø Built on strong libraries
• Build on AMReX – Adaptive Mesh Refinement at eXascale

for data structures & portability
• Build on openPMD-api for I/O

Ø Meant for inter-operability
• OpenPMD standard
• Shares the ecosystem with WarpX and others:
• Beams and laser readers and writers

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io
S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)

Advanced algorithms and high-performance computing for fast and
energy-efficient 3D simulations of plasma acceleration – for everyone

https://amrex-codes.github.io
https://github.com/openPMD/openPMD-api

amrex

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io/
https://amrex-codes.github.io/
https://github.com/openPMD/openPMD-api

Page 39

HiPACE++ – The Code

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Modern HPC standard
• Modern C++, Python for pre- and post-processing
• Cmake build systems, supports various compilers (Clang, GCC, Intel)
• Open-source, documented, versioning system (1 per month), CI

Ø Built on strong libraries
• Build on AMReX – Adaptive Mesh Refinement at eXascale

for data structures & portability
• Build on openPMD-api for I/O

Ø Meant for inter-operability
• OpenPMD standard
• Shares the ecosystem with WarpX and others:
• Beams and laser readers and writers

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io
S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)

Advanced algorithms and high-performance computing for fast and
energy-efficient 3D simulations of plasma acceleration – for everyone

https://amrex-codes.github.io
https://github.com/openPMD/openPMD-api

amrex

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io/
https://amrex-codes.github.io/
https://github.com/openPMD/openPMD-api

Page 40

HiPACE++ – The Code

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Modern HPC standard
• Modern C++, Python for pre- and post-processing
• Cmake build systems, supports various compilers (Clang, GCC, Intel)
• Open-source, documented, versioning system (1 per month), CI

Ø Built on strong libraries
• Build on AMReX – Adaptive Mesh Refinement at eXascale

for data structures & portability
• Build on openPMD-api for I/O

Ø Meant for inter-operability
• OpenPMD standard
• Shares the ecosystem with WarpX and others:
• Beams and laser readers and writers

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io
S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)

Advanced algorithms and high-performance computing for fast and
energy-efficient 3D simulations of plasma acceleration – for everyone

https://amrex-codes.github.io
https://github.com/openPMD/openPMD-api

See presentation by

Rémi Lehe (#3)

amrex

https://github.com/Hi-PACE/hipace
https://hipace.readthedocs.io/
https://amrex-codes.github.io/
https://github.com/openPMD/openPMD-api

Page 41Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Physics
• Laser and particle beam drivers
• Two unit systems (SI and normalized)
• Multi-physics (binary collisions, field ionization, radiation reaction)
• SALAME algorithm for automatic beam loading

Ø Numerics
• Single or double-precision
• Explicit solver (and predictor-corrector loop)
• Runs on various architectures (NVIDIA GPUs, AMD GPUs, most CPUs)

Used on laptops, gaming GPUs, LUMI, Perlmutter, JUWELS Booster, etc.
• Considerable speedup over CPU-only
• Builds on Linux, Windows, MacOS
• Adaptive time step
• In-situ diagnostics

Used in (a few) scientific publications
R. D’Arcy et al., Nature 603.7899 (2022)
S. Diederichs et al., PRAB 25.9 (2022)
S. Diederichs et al., Phys. Plasmas 29.4 (2022)
F. Peña et al., arXiv:2305.09581 (2023)

HiPACE++ – The Capabilities
Advanced algorithms and high-performance computing for fast and

energy-efficient 3D simulations of plasma acceleration – for everyone

4 GPUs 1024 CPU cores
Runtime (seconds) 6 556
Cost (node-hours) 6 11900

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams
with 106 beam particles each. The final run time is given for the maximum number
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is
the reference simulation setup from Sec. 4 with nsteps = 1000 time
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time
steps (for more details see the Appendix). The efficiency η is given
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on
i ranks. Due to the filling and emptying of the pipeline, the ideal
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The
results are shown in Fig. 6. The temporal domain decomposition
(red lines) shows an efficiency close to the ideal pipeline scaling
(black dashed line). The spatial decomposition (blue lines) suffers
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also
run on Summit (red dotted line), which is equipped with 6 NVIDIA
V100 GPUs per node. The maximum number of ranks is chosen so
that only 4 slices remain per sub-domain, which was the case at
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the
spatial decomposition even though it is at a disadvantage: due
to performance enhancements unrelated to the parallelization, the
absolute run time is reduced, causing the communications to take
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of
new numerical methods or physics packages. HiPACE++ uses the
cross-platform build system CMake and can be installed, as well
as its dependencies, with software package managers, such as
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses
the openPMD-api [47] for I/O, allowing for interoperability and
simple benchmarking with other codes. Both HDF5 [48] and
ADIOS2 [49] file formats are supported (a feature inherited from

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of
the witness beam presented in Sec. 4 with an initial transverse offset of the witness
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are
re-scaled to the plasma skin depth k−1

p , the fields to the cold,
non-relativistic wave breaking limit E0, and all densities to the
background plasma density n0. All operations are performed in
the unit system chosen by the user. An advanced parser makes
it possible to write the input file in a unit system and run the
simulation in the other one, allowing to use the advantages of
both unit systems (numerical accuracy, interoperability with other
codes, convenience for multi-physics implementations, etc.) in a
flexible manner.

The code can be compiled in either double (C++ double) or
single (C++ float) precision, a feature inherited from AMReX. The
effect of the precision on the simulation accuracy is investigated by
comparing the evolution of the emittance of the witness beam of
the reference setup with an initial emittance of εx,0 = 0 when an
initial transverse offset of the bunch centroid xb = σx is present in
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%)
in normalized units (SI units) after 3000 time steps. As expected,
the difference between single and double precision is higher for
SI units than for normalized units, although both remain on the
percent level.

Table 1 shows the runtime in single and double precisions
for the two solvers on two different architectures, a cutting-edge
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”)
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC
GPU than on the gaming GPU. However, with the capability to
run high-resolution production simulations on a gaming GPU with
comparable accuracy and performance as on an HPC GPU in single
precision, HiPACE++ provides useful scalability from laptops to the
largest supercomputers.

7

Page 42Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Physics
• Laser and particle beam drivers
• Two unit systems (SI and normalized)
• Multi-physics (binary collisions, field ionization, radiation reaction)
• SALAME algorithm for automatic beam loading

Ø Numerics
• Single or double-precision
• Explicit solver (and predictor-corrector loop)
• Runs on various architectures (NVIDIA GPUs, AMD GPUs, most CPUs)

Used on laptops, gaming GPUs, LUMI, Perlmutter, JUWELS Booster, etc.
• Considerable speedup over CPU-only
• Builds on Linux, Windows, MacOS
• Adaptive time step
• In-situ diagnostics

Used in (a few) scientific publications
R. D’Arcy et al., Nature 603.7899 (2022)
S. Diederichs et al., PRAB 25.9 (2022)
S. Diederichs et al., Phys. Plasmas 29.4 (2022)
F. Peña et al., arXiv:2305.09581 (2023)

HiPACE++ – The Capabilities
Advanced algorithms and high-performance computing for fast and

energy-efficient 3D simulations of plasma acceleration – for everyone

4 GPUs 1024 CPU cores
Runtime (seconds) 6 556
Cost (node-hours) 6 11900

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams
with 106 beam particles each. The final run time is given for the maximum number
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is
the reference simulation setup from Sec. 4 with nsteps = 1000 time
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time
steps (for more details see the Appendix). The efficiency η is given
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on
i ranks. Due to the filling and emptying of the pipeline, the ideal
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The
results are shown in Fig. 6. The temporal domain decomposition
(red lines) shows an efficiency close to the ideal pipeline scaling
(black dashed line). The spatial decomposition (blue lines) suffers
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also
run on Summit (red dotted line), which is equipped with 6 NVIDIA
V100 GPUs per node. The maximum number of ranks is chosen so
that only 4 slices remain per sub-domain, which was the case at
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the
spatial decomposition even though it is at a disadvantage: due
to performance enhancements unrelated to the parallelization, the
absolute run time is reduced, causing the communications to take
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of
new numerical methods or physics packages. HiPACE++ uses the
cross-platform build system CMake and can be installed, as well
as its dependencies, with software package managers, such as
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses
the openPMD-api [47] for I/O, allowing for interoperability and
simple benchmarking with other codes. Both HDF5 [48] and
ADIOS2 [49] file formats are supported (a feature inherited from

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of
the witness beam presented in Sec. 4 with an initial transverse offset of the witness
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are
re-scaled to the plasma skin depth k−1

p , the fields to the cold,
non-relativistic wave breaking limit E0, and all densities to the
background plasma density n0. All operations are performed in
the unit system chosen by the user. An advanced parser makes
it possible to write the input file in a unit system and run the
simulation in the other one, allowing to use the advantages of
both unit systems (numerical accuracy, interoperability with other
codes, convenience for multi-physics implementations, etc.) in a
flexible manner.

The code can be compiled in either double (C++ double) or
single (C++ float) precision, a feature inherited from AMReX. The
effect of the precision on the simulation accuracy is investigated by
comparing the evolution of the emittance of the witness beam of
the reference setup with an initial emittance of εx,0 = 0 when an
initial transverse offset of the bunch centroid xb = σx is present in
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%)
in normalized units (SI units) after 3000 time steps. As expected,
the difference between single and double precision is higher for
SI units than for normalized units, although both remain on the
percent level.

Table 1 shows the runtime in single and double precisions
for the two solvers on two different architectures, a cutting-edge
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”)
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC
GPU than on the gaming GPU. However, with the capability to
run high-resolution production simulations on a gaming GPU with
comparable accuracy and performance as on an HPC GPU in single
precision, HiPACE++ provides useful scalability from laptops to the
largest supercomputers.

7

See presentation by

Severin Diederichs (#2)

Page 43

Quasi-static PIC is well-suited for GPU computing

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø Massive parallelism: Particle-in-cell can be ported efficiently to GPU
• PIConGPU (HZDR, Germany), WarpX (LBNL, USA)
• > millions of cells and particles
• Main challenge: particle-grid exchanges

Ø Modest high-bandwidth memory: Only 1 slice in device memory
• In reality, currently full particle driver
• High transverse resolution (8000() on a single GPU à no comms
• Parallelization in longitudinal direction

GPU

80 GB

CPU

1 TB

In principle, only the current
slice (laser, beam, plasma,
fields) need to be in GPU
memory

Compute node

GPU

80 GB

GPU

80 GB

CPU

1 TB

CPU
Compute node

CPU

1 TB

CPU
GPU (device)

CPU (host)

Page 44

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 45

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 46

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Send lasers and beams
in this sub-domain

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 47

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 48

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 49

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 50

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 51

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 52

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 53

Parallelization: the new (old?) pipeline algorithm

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Rank
(GPU)

0

1

2

Time step

0 1 2 3 4

Longitudinal parallelization: MPI (Message Passing Interface)
• 𝑛*+,-. < 𝑛./0#1. (4×𝑛./0#1. currently in HiPACE++)
• 𝑛*+,-. ≤ 𝑛.213.

Transverse parallelization:
• None on GPU
• OpenMP on CPU

Page 54

Performance of the code & parallelization

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 3. Performance comparison between GPU and CPU, for the same setup as
Sec. 4 for a single time step with medium (512 × 512 × 1024 cells, blue lines)
and high (2048 × 2048 × 1024 cells, red lines) resolutions, with predictor-corrector
field solver) on the JUWELS Booster. Simulations on CPU used HiPACE (MPI-parallel,
dashed lines) and HiPACE++ (OpenMP-parallel, dotted line). Simulations on GPU
used HiPACE++. The high resolution run with HiPACE does not fit on less than 16
nodes on CPU.

and fields on the grid. Due to the relatively small size of beam
data, the amount of data virtually depends only on the transverse
number of cells. For example, the total allocated data on the global
memory of a NVIDIA A100 GPU with the explicit solver (respec-
tively predictor-corrector method) with 2 million beam particles
(accounting for ∼ 230 MB) and 1 particle per cell for the plasma
electrons is 2.0 GB (resp. 2.0 GB) for a problem of 128 × 128 cells
transversely, 2.9 GB (resp. 2.6 GB) for a 1024 × 1024 problem and
19.2 GB (resp. 12.9 GB) for a 4096 × 4096 problem size (for de-
tails on all simulation parameters see the Appendix). Therefore,
most practical problems fit on a single GPU, and the performance
of HiPACE++ on a single NVIDIA A100 GPU is detailed below.

The benefit of fitting the problem on a single GPU is clearly
demonstrated in Fig. 3. Typical CPU implementations of the 3D
QSA PIC method [22,39,21] accelerate the calculation by decom-
posing the domain transversely, resulting in large amounts of com-
munications (in particular in the Poisson solver) that dominate the
runtime and cause non-ideal scaling. The CPU runs used only the
48 CPU cores on the nodes of the JUWELS Booster. The GPU runs
also used the 4 GPUs. The CPU runs were parallelized in the trans-
verse direction only. Longitudinal parallelization is an orthogonal
problem, and is done in the exact same way on CPU and GPU
(see Sec. 5.2). On GPU, the simulations at medium and high resolu-
tions take 3.6 sec and 22.9 sec and cost 2.5 × 10−4 node-hours and
1.6 × 10−3 node-hours, respectively. For the same simulations us-
ing 1024 cores on CPU, HiPACE requires 17.5 sec and 556.1 sec for
a cost of 0.10 node-hours and 3.3 node-hours. At medium resolu-
tion, the run on 1 (1024) CPU cores was 145× (4.7×) slower and
cost 12× (630×) more node-hours than on 1 GPU. At high resolu-
tion, the run on 16 (1024) CPU cores was 197× (24×) slower and
cost 261× (2050×) more node-hours than on 1 GPU. The number
of node-hours was calculated as [number of CPU cores]/48 for CPU
runs, and [number of GPUs]/4 for GPU runs, as each node has 48
CPU cores and 4 GPUs.

For CPU computing with no hardware accelerator, shared-
memory parallelization with OpenMP is implemented to enable
transverse parallelization when running on CPU only. In that case,
tiling is implemented for plasma particle operations (field gather,
particle push and current deposition), and the threaded version
of FFTW can be called. As shown by the dotted line in Fig. 3,
the transverse OpenMP parallelization of HiPACE++ gives a simi-
lar scaling as the pure MPI transverse parallelization of the legacy
code HiPACE up to 16 threads (running on 16 cores of the 24-core
JUWELS Booster CPUs). We attribute the performance improve-
ment of HiPACE++ over HiPACE to better memory handling, but

Fig. 4. Runtime for different transverse resolutions on (a) NVIDIA A100 GPUs and
(b) a single Graphics Compute Die (GCD) of an AMD Instinct MI250X. Left bars:
using the predictor-corrector loop. Right bars: using the explicit field solver. The
runtimes of 1024 × 1024 for AMD Instinct MI250X only, 2048 × 2048 and 4096 ×
4096 transverse grid points are plotted on a separate y-axis to improve readability
of the figure.

detailed profiling of the legacy code HiPACE is out of scope of this
article.

For further insight into the performance of HiPACE++, we ran
the reference setup presented in Sec. 4 with increasing transverse
resolution, keeping all other parameters constant (for more details
see the Appendix). This scan uses 1024 longitudinal grid points,
and performance data is given for both the predictor-corrector loop
and the explicit field solver. The predictor-corrector loop used up
to 5 iterations, which typically yields a comparable level of conver-
gence between the two solvers in standard beam-driven plasma
accelerator scenarios. We observed that the explicit solver con-
verges faster than the predictor-corrector loop in challenging sim-
ulation settings, such as large transverse box sizes or abrupt beam
current spikes.

The most time-consuming functions of the two solvers on an
NVIDIA A100 are shown in Fig. 4 (a). In both cases a vast majority
of the time is spent in solving for Bx/y . While both the fast Pois-
son solver and particle operations dominate the predictor-corrector
solver at different resolutions, the multigrid solver is always the
most expensive operation for the explicit solver. As a reminder,
each iteration in the predictor-corrector loop involves all PIC oper-
ations for the plasma particles (field gather, particle push, current
deposition and field solve) repeated up to 5 times per slice. Note
that this study is not a comparison of the two field solvers, as they
have different convergence properties, but rather a performance
analysis of each solver separately.

The performance portability of HiPACE++ on ROCm-capable
AMD GPUs is demonstrated by running the transverse scaling on
a single Graphics Compute Die (GCD) of an AMD Instinct MI250X,
shown in Fig. 4 (b). The scan was performed on the early-access
test system Crusher at the Oak Ridge Leadership Facility, which is
equipped with a 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPY-
C” CPU and four AMD Instinct MI250X. Each MI250X contains two
GCDs, which can be viewed as two separate GPUs from a program-

5

Ø Good scaling, good performance and AMD and NVIDIA GPUs
Ø Relatively old tests, significant speedup since then

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams
with 106 beam particles each. The final run time is given for the maximum number
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is
the reference simulation setup from Sec. 4 with nsteps = 1000 time
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time
steps (for more details see the Appendix). The efficiency η is given
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on
i ranks. Due to the filling and emptying of the pipeline, the ideal
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The
results are shown in Fig. 6. The temporal domain decomposition
(red lines) shows an efficiency close to the ideal pipeline scaling
(black dashed line). The spatial decomposition (blue lines) suffers
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also
run on Summit (red dotted line), which is equipped with 6 NVIDIA
V100 GPUs per node. The maximum number of ranks is chosen so
that only 4 slices remain per sub-domain, which was the case at
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the
spatial decomposition even though it is at a disadvantage: due
to performance enhancements unrelated to the parallelization, the
absolute run time is reduced, causing the communications to take
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of
new numerical methods or physics packages. HiPACE++ uses the
cross-platform build system CMake and can be installed, as well
as its dependencies, with software package managers, such as
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses
the openPMD-api [47] for I/O, allowing for interoperability and
simple benchmarking with other codes. Both HDF5 [48] and
ADIOS2 [49] file formats are supported (a feature inherited from

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of
the witness beam presented in Sec. 4 with an initial transverse offset of the witness
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are
re-scaled to the plasma skin depth k−1

p , the fields to the cold,
non-relativistic wave breaking limit E0, and all densities to the
background plasma density n0. All operations are performed in
the unit system chosen by the user. An advanced parser makes
it possible to write the input file in a unit system and run the
simulation in the other one, allowing to use the advantages of
both unit systems (numerical accuracy, interoperability with other
codes, convenience for multi-physics implementations, etc.) in a
flexible manner.

The code can be compiled in either double (C++ double) or
single (C++ float) precision, a feature inherited from AMReX. The
effect of the precision on the simulation accuracy is investigated by
comparing the evolution of the emittance of the witness beam of
the reference setup with an initial emittance of εx,0 = 0 when an
initial transverse offset of the bunch centroid xb = σx is present in
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%)
in normalized units (SI units) after 3000 time steps. As expected,
the difference between single and double precision is higher for
SI units than for normalized units, although both remain on the
percent level.

Table 1 shows the runtime in single and double precisions
for the two solvers on two different architectures, a cutting-edge
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”)
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC
GPU than on the gaming GPU. However, with the capability to
run high-resolution production simulations on a gaming GPU with
comparable accuracy and performance as on an HPC GPU in single
precision, HiPACE++ provides useful scalability from laptops to the
largest supercomputers.

7

Page 55

Performance of the code & parallelization

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

Ø S. Diederichs et al., Comput. Phys. Comm. 278: 108421 (2022)S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 3. Performance comparison between GPU and CPU, for the same setup as
Sec. 4 for a single time step with medium (512 × 512 × 1024 cells, blue lines)
and high (2048 × 2048 × 1024 cells, red lines) resolutions, with predictor-corrector
field solver) on the JUWELS Booster. Simulations on CPU used HiPACE (MPI-parallel,
dashed lines) and HiPACE++ (OpenMP-parallel, dotted line). Simulations on GPU
used HiPACE++. The high resolution run with HiPACE does not fit on less than 16
nodes on CPU.

and fields on the grid. Due to the relatively small size of beam
data, the amount of data virtually depends only on the transverse
number of cells. For example, the total allocated data on the global
memory of a NVIDIA A100 GPU with the explicit solver (respec-
tively predictor-corrector method) with 2 million beam particles
(accounting for ∼ 230 MB) and 1 particle per cell for the plasma
electrons is 2.0 GB (resp. 2.0 GB) for a problem of 128 × 128 cells
transversely, 2.9 GB (resp. 2.6 GB) for a 1024 × 1024 problem and
19.2 GB (resp. 12.9 GB) for a 4096 × 4096 problem size (for de-
tails on all simulation parameters see the Appendix). Therefore,
most practical problems fit on a single GPU, and the performance
of HiPACE++ on a single NVIDIA A100 GPU is detailed below.

The benefit of fitting the problem on a single GPU is clearly
demonstrated in Fig. 3. Typical CPU implementations of the 3D
QSA PIC method [22,39,21] accelerate the calculation by decom-
posing the domain transversely, resulting in large amounts of com-
munications (in particular in the Poisson solver) that dominate the
runtime and cause non-ideal scaling. The CPU runs used only the
48 CPU cores on the nodes of the JUWELS Booster. The GPU runs
also used the 4 GPUs. The CPU runs were parallelized in the trans-
verse direction only. Longitudinal parallelization is an orthogonal
problem, and is done in the exact same way on CPU and GPU
(see Sec. 5.2). On GPU, the simulations at medium and high resolu-
tions take 3.6 sec and 22.9 sec and cost 2.5 × 10−4 node-hours and
1.6 × 10−3 node-hours, respectively. For the same simulations us-
ing 1024 cores on CPU, HiPACE requires 17.5 sec and 556.1 sec for
a cost of 0.10 node-hours and 3.3 node-hours. At medium resolu-
tion, the run on 1 (1024) CPU cores was 145× (4.7×) slower and
cost 12× (630×) more node-hours than on 1 GPU. At high resolu-
tion, the run on 16 (1024) CPU cores was 197× (24×) slower and
cost 261× (2050×) more node-hours than on 1 GPU. The number
of node-hours was calculated as [number of CPU cores]/48 for CPU
runs, and [number of GPUs]/4 for GPU runs, as each node has 48
CPU cores and 4 GPUs.

For CPU computing with no hardware accelerator, shared-
memory parallelization with OpenMP is implemented to enable
transverse parallelization when running on CPU only. In that case,
tiling is implemented for plasma particle operations (field gather,
particle push and current deposition), and the threaded version
of FFTW can be called. As shown by the dotted line in Fig. 3,
the transverse OpenMP parallelization of HiPACE++ gives a simi-
lar scaling as the pure MPI transverse parallelization of the legacy
code HiPACE up to 16 threads (running on 16 cores of the 24-core
JUWELS Booster CPUs). We attribute the performance improve-
ment of HiPACE++ over HiPACE to better memory handling, but

Fig. 4. Runtime for different transverse resolutions on (a) NVIDIA A100 GPUs and
(b) a single Graphics Compute Die (GCD) of an AMD Instinct MI250X. Left bars:
using the predictor-corrector loop. Right bars: using the explicit field solver. The
runtimes of 1024 × 1024 for AMD Instinct MI250X only, 2048 × 2048 and 4096 ×
4096 transverse grid points are plotted on a separate y-axis to improve readability
of the figure.

detailed profiling of the legacy code HiPACE is out of scope of this
article.

For further insight into the performance of HiPACE++, we ran
the reference setup presented in Sec. 4 with increasing transverse
resolution, keeping all other parameters constant (for more details
see the Appendix). This scan uses 1024 longitudinal grid points,
and performance data is given for both the predictor-corrector loop
and the explicit field solver. The predictor-corrector loop used up
to 5 iterations, which typically yields a comparable level of conver-
gence between the two solvers in standard beam-driven plasma
accelerator scenarios. We observed that the explicit solver con-
verges faster than the predictor-corrector loop in challenging sim-
ulation settings, such as large transverse box sizes or abrupt beam
current spikes.

The most time-consuming functions of the two solvers on an
NVIDIA A100 are shown in Fig. 4 (a). In both cases a vast majority
of the time is spent in solving for Bx/y . While both the fast Pois-
son solver and particle operations dominate the predictor-corrector
solver at different resolutions, the multigrid solver is always the
most expensive operation for the explicit solver. As a reminder,
each iteration in the predictor-corrector loop involves all PIC oper-
ations for the plasma particles (field gather, particle push, current
deposition and field solve) repeated up to 5 times per slice. Note
that this study is not a comparison of the two field solvers, as they
have different convergence properties, but rather a performance
analysis of each solver separately.

The performance portability of HiPACE++ on ROCm-capable
AMD GPUs is demonstrated by running the transverse scaling on
a single Graphics Compute Die (GCD) of an AMD Instinct MI250X,
shown in Fig. 4 (b). The scan was performed on the early-access
test system Crusher at the Oak Ridge Leadership Facility, which is
equipped with a 64-core AMD EPYC 7A53 “Optimized 3rd Gen EPY-
C” CPU and four AMD Instinct MI250X. Each MI250X contains two
GCDs, which can be viewed as two separate GPUs from a program-

5

Ø Good scaling, good performance and AMD and NVIDIA GPUs
Ø Relatively old tests, significant speedup since then

S. Diederichs, C. Benedetti, A. Huebl et al. Computer Physics Communications 278 (2022) 108421

Fig. 6. Strong scaling for two different problems with a) 1024 × 1024 × 1024 cells
with 4 plasma particles per cell for 1000 time steps and b) 2048 ×2048 ×2048 cells
with 1 plasma particle per cell for 2048 time steps. Both settings used two beams
with 106 beam particles each. The final run time is given for the maximum number
of ranks used. In b) the scaling starts at 4 GPUs due to time limit restriction on the
supercomputer. The problems are parallelized in the longitudinal direction only.

orders of magnitude less data than the spatial decomposition, and
is hence expected to show better scalability.

The performance of the temporal decomposition pipeline is as-
sessed via a strong scaling of two different setups. One setup is
the reference simulation setup from Sec. 4 with nsteps = 1000 time
steps and the other uses 2048 × 2048 × 2048 cells and 2048 time
steps (for more details see the Appendix). The efficiency η is given
by η(nranks) = t(1)/[nrankst(nranks)] where t(i) is the run time on
i ranks. Due to the filling and emptying of the pipeline, the ideal
efficiency for both pipelines is not identically 1 but rather given by

ηideal(nranks) =
(

1 + nranks − 1
nsteps

)−1

. (10)

An efficiency of 1 is obtained in the limit of nsteps # nranks . The
results are shown in Fig. 6. The temporal domain decomposition
(red lines) shows an efficiency close to the ideal pipeline scaling
(black dashed line). The spatial decomposition (blue lines) suffers
from efficiency degradation above 8 ranks. Both scalings were per-
formed on the JUWELS Booster and the reference setup was also
run on Summit (red dotted line), which is equipped with 6 NVIDIA
V100 GPUs per node. The maximum number of ranks is chosen so
that only 4 slices remain per sub-domain, which was the case at
256 ranks (= 256 GPUs) for the reference setup and 512 ranks for
the higher-resolution case.

Note, that the temporal domain decomposition outperforms the
spatial decomposition even though it is at a disadvantage: due
to performance enhancements unrelated to the parallelization, the
absolute run time is reduced, causing the communications to take
up a larger fraction of the total run time.

6. Software practice and additional features

HiPACE++ is a versatile, open-source, 3D, quasi-static PIC soft-
ware with an object-oriented design to invite the integration of
new numerical methods or physics packages. HiPACE++ uses the
cross-platform build system CMake and can be installed, as well
as its dependencies, with software package managers, such as
Spack [45].

HiPACE++ complies with the openPMD standard [46] and uses
the openPMD-api [47] for I/O, allowing for interoperability and
simple benchmarking with other codes. Both HDF5 [48] and
ADIOS2 [49] file formats are supported (a feature inherited from

Fig. 7. (a) Evolution of the emittance during propagation over 3000 time steps of
the witness beam presented in Sec. 4 with an initial transverse offset of the witness
bunch centroid of xb = σx , for the two field solvers, in normalized units. The error
due to single precision is computed for each field solver with respect to the double-
precision simulation; (b) Same for a simulation running in SI units, where k−1

p =
10 µm.

the openPMD-api), and the capability to read an external beam
from file at the openPMD format is available.

Two unit systems, SI units and normalized units, are avail-
able as a runtime parameter. In normalized units, all lengths are
re-scaled to the plasma skin depth k−1

p , the fields to the cold,
non-relativistic wave breaking limit E0, and all densities to the
background plasma density n0. All operations are performed in
the unit system chosen by the user. An advanced parser makes
it possible to write the input file in a unit system and run the
simulation in the other one, allowing to use the advantages of
both unit systems (numerical accuracy, interoperability with other
codes, convenience for multi-physics implementations, etc.) in a
flexible manner.

The code can be compiled in either double (C++ double) or
single (C++ float) precision, a feature inherited from AMReX. The
effect of the precision on the simulation accuracy is investigated by
comparing the evolution of the emittance of the witness beam of
the reference setup with an initial emittance of εx,0 = 0 when an
initial transverse offset of the bunch centroid xb = σx is present in
Fig. 7. For both predictor-corrector and explicit field solvers, the er-
ror attributed to using single precision remains well below 1% (2%)
in normalized units (SI units) after 3000 time steps. As expected,
the difference between single and double precision is higher for
SI units than for normalized units, although both remain on the
percent level.

Table 1 shows the runtime in single and double precisions
for the two solvers on two different architectures, a cutting-edge
HPC GPU (NVIDIA A100) and a typical consumer-grade (“gaming”)
GPU (NVIDIA RTX2070), easily available on a laptop. As antici-
pated, double-precision calculations are much faster on the HPC
GPU than on the gaming GPU. However, with the capability to
run high-resolution production simulations on a gaming GPU with
comparable accuracy and performance as on an HPC GPU in single
precision, HiPACE++ provides useful scalability from laptops to the
largest supercomputers.

7

See presentation by

Alex Sinn (#5)

Page 56

Code usage (illustration)

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

// Provided proper environment

> git clone https://github.com/Hi-PACE/hipace.git

> git checkout v23.05

> cmake -S . -B build -DHiPACE_COMPUTE=CUDA

> cmake --build build -j 16

> ./build/bin/hipace inputs

> mpirun –np 4 ./build/bin/hipace inputs

max_step = 300
amr.n_cell = 1024 1024 1024
amr.max_level = 0
hipace.max_time = 0.3/clight
diagnostic.output_period = 1
hipace.dt = adaptive

geometry.is_periodic = true true false
geometry.prob_lo = -250.e-6 -250.e-6 -250.e-6
geometry.prob_hi = 250.e-6 250.e-6 110.e-6

beams.names = driver
driver.position_mean = 0. 0. 0.
driver.position_std = 2.e-6 2.e-6 30.e-6
driver.injection_type = fixed_weight
driver.num_particles = 1000000
driver.total_charge = .6e-9
driver.u_mean = 0. 0. 1000.
driver.u_std = 2. 2. 10.
driver.do_symmetrize = 1

plasmas.names = electron
electron.density(x,y,z) = 2.e22
electron.ppc = 1 1
electron.u_mean = 0.0 0.0 0.
electron.element = electron

diagnostic.diag_type = xz

inputs

https://hipace.readthedocs.io/en/latest/run/get_started.html

Page 57

Code usage (illustration)

Maxence Thévenet - MPA - HiPACE++ Workshop (11/07/2023)

// Provided proper environment

> git clone https://github.com/Hi-PACE/hipace.git

> git checkout v23.05

> cmake -S . -B build -DHiPACE_COMPUTE=CUDA

> cmake --build build -j 16

> ./build/bin/hipace inputs

> mpirun –np 4 ./build/bin/hipace inputs

max_step = 300
amr.n_cell = 1024 1024 1024
amr.max_level = 0
hipace.max_time = 0.3/clight
diagnostic.output_period = 1
hipace.dt = adaptive

geometry.is_periodic = true true false
geometry.prob_lo = -250.e-6 -250.e-6 -250.e-6
geometry.prob_hi = 250.e-6 250.e-6 110.e-6

beams.names = driver
driver.position_mean = 0. 0. 0.
driver.position_std = 2.e-6 2.e-6 30.e-6
driver.injection_type = fixed_weight
driver.num_particles = 1000000
driver.total_charge = .6e-9
driver.u_mean = 0. 0. 1000.
driver.u_std = 2. 2. 10.
driver.do_symmetrize = 1

plasmas.names = electron
electron.density(x,y,z) = 2.e22
electron.ppc = 1 1
electron.u_mean = 0.0 0.0 0.
electron.element = electron

diagnostic.diag_type = xz

inputs

https://hipace.readthedocs.io/en/latest/run/get_started.html

See presentation by

Severin Diederichs (#4)

Thank you for your attention

Contributions from all HiPACE++ contributors

Conclusion
Ø HiPACE++: 3D, QS PIC for plasma acceleration

Ø Advanced methods (pipeline, MG)

Ø HPC (GPU) computing

Ø Open-source, documented

Ø New contributors are welcome!

Perspective
Ø More physics added

Ø Goals:

multi-stage collider-relevant parameters

Target new physics problems

Ø Advanced algorithms (MR)

Ø Enjoy the workshop!

Thank you for your attention

Contributions from all HiPACE++ contributors

Conclusion
Ø HiPACE++: 3D, QS PIC for plasma acceleration

Ø Advanced methods (pipeline, MG)

Ø HPC (GPU) computing

Ø Open-source, documented

Ø New contributors are welcome!

Perspective
Ø More physics added

Ø Goals:

multi-stage collider-relevant parameters

Target new physics problems

Ø Advanced algorithms (MR)

Ø Enjoy the workshop!

