C RDIA

CoRDIA: An Imaging Detector for Next-Generation Synchrotron Rings and Free Electron Lasers

Ulrich Trunk for the CoRDIA collaboration:

Heinz Graafsma¹, Mohamed Lamine Hafiane², Alexander Klyuev¹, Hans Krüger², Sabine Lange¹, Torsten Laurus¹, Alesandro Marras¹, David Pennicard¹, Ulrich Trunk¹, Tianyang Wang², Cornelia Wunderer¹ ¹DESY ²Bonn University

Outline

Motivation – not just "yet another Pixel Chip"

- Existing Detectors
- New Sources
- New Challenges and Requirements
- "CoRDIA Cooking" Ingredients
 - □ Signal path Stage by Stage
 - Preamp with dynamic Gain Switching
 - CDS Differential sampling Stage
 - SAR ADC
 - PCS & GWT
 - Sequencer

- ASIC Design
 - Superpixel
 - "Stonehenge" Layout
- Development Roadmap
- CoRDIA Systems many TBDs
 - Chip Size
 - Readout Board Architecture
 - Outlook

Current Imagers

C RDIA

Imager example for Synchrotron Rings: LAMBDA

- Up to 10 megapixel (55 μm pixel size)
- 2 kHz frame rate (continuous)
- Photon counting up to 250k photons/pixel/s

MM-PAD-1 \rightarrow 2.1

□ 1.1kHz \rightarrow 10 kHz (<u>continuous</u>)

CITIUS

17.4 kHz (continuous)

Ulrich Trunk | DESY Joint instrumentation Seminar | 14 July 2023

Imager example for European XFEL: AGIPD

- \Box 1 megapixel (200 μ m pixels), 4 megapixel in development
- □ <u>4.5 MHz burst imaging</u> (internal storage: 352 images)
- Dynamic range single photon to 10⁴ photons /pixel/image

LPD (500µm, 500images)
 <u>4.5 MHz burst imaging (internal storage)</u>
 DSSC (hexagonal Ø≈230µm, 800images)
 <u>4.5 MHz burst imaging (internal storage)</u>

$3^{rd} \rightarrow 4^{th}$ Generation Synchrotron Rings

C RDIA

3rd Generation Sources

Extended Source – only fraction of light hits optics – extended focus Multibend achromat technology On-axis injection technology 4th Generation Sources (Diffraction limited)

Collimated Beam

all light hits optics – point focus

- high brightness and coherence up to high photon energies
- 100-1000 fold improvement in brilliance and coherent flux
- More photons/s on the detector
- Frame rate requirements in experiments increases from kHz to <u>>100 kHz</u>

FEL Upgrades: Reduced Gaps & Longer Trains CORDIA

Future Source Upgrades

C RDIA

PETRA-IV: Upgrade to diffraction limited ring (2028)

PETRA-III electron bunch

PETRA-IV electron bunch

100-1000 fold improvement in brilliance and

coherent flux

Frame rate requirements in some experiments

increase from kHz to >100 kHz (continuous)

readout

Ulrich Trunk | DESY Joint instrumentation Seminar | 14 July 2023

European XFEL: CW mode operation (20??)

Continuous Readout Digitising Imager Array

CoRDIA – Design Goals

- Pixel size 110μm × 110μm
- □ Continuous Frame Rate $f_{FR} \approx 150$ kHz (≥100 kHz)
- Dead-time free pipelined operation
- Single-photon sensitive (@ ≤12keV)
- $\square \geq 10k$ photon Dynamic Range
- Little or no dead area

Collaboration of Bonn University & DESY

C RDIA

CoRDIA – Implementation

- Hybrid pixel detector
- Charge integrating
- Dynamic gain switching (à la AGIPD)
- Electron-collecting to be compatible with various sensors:
 - Si for hard (12keV X-Rays)
 - High-Z materials for E > 15keV
 - Active (LGAD) sensors for low E
- □ On-chip digitisation $@ \ge 10$ bit
- Multi-Gbit data transmission
 (based on Timepix4 implementation)
- TSMC 65 nm technology

universität**bonn**

CoRDIA – Architecture & Signal Path

C RDIA

CoRDIA = <u>**Co**</u>ntinuous <u>**R**</u>eadout <u>**D**</u>igitizing <u>I</u>mager <u>**A**</u>rray

CW (continuous wave) operation
 Pipelined
 Digitizing
 MGBT readout

Integrating Preamp – An FEL Prerequisite

CORDIA Single Photons and Dynamic Gain Switching

Charge integrating preamplifier conflict:

- **High sensitivity**
- Low noise
- Low dynamic range

- Low sensitivity
- High noise
- High dynamic range

Large signals don't need low noise Solution:

Dynamic Gain Switching – add a bigger feedback cap, if the small one is full

For risks and side effects, consult a detector expert or ASIC designer!

analog chain (preamplifier + S/H + CDS), Adaptive Gain operation

Dynamic Gain Switching Side Effects: Late Gain Switching

Dynamic Gain Switching Side Effects: Late Gain Switching

Preamp (CoRDIA 0.1)

C RDIA

Adaptive gain architecture based on AGIPD

- 2 gains
- Core based on inverter stage
- 'Std. cell grid' layout

- Real estate not sufficient for a 10⁴ photon FB cap
- Investigation of current dump and extrapolation (TuT) schemes ongoing

Preamp (CoRDIA 0.1)

C C R D I A

14

Adaptive gain architecture based on AGIPD analog chain (preamplifier + S/H + CDS), Adaptive Gain operation 2 gains 0.25 *f*=150kHz Core based on inverter stage 0 output [V] 0.2 0 Reset 'Std. cell grid' layout analog chain, high Gain 0 0 EQ 0.15 analog chain, low Gain 0 CDS diff. EN 0 0.1 Gain blocking 0 analog chain: 0 0.05 0 0 0 0 Out analog chain (preamplifier + S/H + CDS), Adaptive Gain operation 0.25 output [V] analog chain, high Gain analog chain, low Gain CDS diff. chain: 0.05 -Extrapolation: polen ~2200 photons Ulrich Trunk | Dest Structure 150 200 250 300 350

CDS – Correlated Double Sampling Stage

C RDIA

SAR ADC (HSI_ADC01)

C RDIA

HSI_ADC01 contains 4 successive approximation register (SAR) ADCs

- Differential charge-redistribution type
- 🔲 11 bit
- ⊇ ≥2.5 MSamples/s
- Serial data output

Nonlinearity (INL & DNL) ≤1 LSB => ~10 ENOBs

IEEE 802.3ae Gigabit Link in a Nutshell

GWT – Gigabit Wire Transmitter

Putting togeter the Ingredients...

C RDIA

11-bit SAR developed, tested by UniBonn. DNL , INL test suggests >10ENOBs @ expected frame rate

PCS+GWT

lazy-person approach: reuse Timepix4 solution

5.12Gbps in Timepix4v2

NIKHEF & Timepix collab.: good eye diagram @ 5.12 Gb/s. (possible to extend to 10.24 Gb/s, but wire/bump bonding limits)

...into Superpixels

CoRDIA 0.2

C RDIA

Silicon in hand since June 2023

Chip Test Environment

C RDIA

For chip testing we use a Caribou DAQ system developed by

- Brookhaven Nat. Lab
- Université de Genève
- CERN
- DESY

It uses an FPGA evaluation board with embedded Linux (Poky) and comes with DAQ software (Peary)

CoRDIA 0.3

C C R D I A

CoRDIA 0.2 (FE+FADC) Test Chip

Received 1st week of June Just started testing

PCS (adapted to our design) GWT

Peripherial structures

□ SDI configuration registers

Test pattern generator

expected submission on MPW mid-September

debug

outputs

CoRDIA Development Roadmap

C RDIA

4-Side Buttability - Hidden periphery request CORDIA

blind area

Ulrich Trunk | DESY Joint instrumentation Seminar | 14 July 2023

Increasing the Pixel Size to 110µm

C RDIA

To profit from advanced sensor developments for Medipix/Timpix we decided to increase the pixel size to 100µm

□+40µm per 'superpixel'

Space for

Bias structures

- Hidden periphery
- Hidden GWTs

Two options for a Hidden Periphery

C RDIA

- Timpix4 option
 Compact superpixel
 matrix
 Dedicated periphery
 Structure hidden
 under top layer
- 2nd Option
- Distributed periphery

Two options for a Hidden Periphery

C RDIA

80um

G

channe

"free

80µm '

And how about TSVs...

An Old Approach to Using Silicon

C RDIA

An Old Approach to Using Silicon

C RDIA

An Elaborate Approach to a Hidden Periphery CORDIA

Top Level Design

A Bigger Picture – Complete Systems

Après moi le deluge?

C RDIA

Per Pixel:

- 11 bit from ADC resolution
- 2 bit from gain encoding
- 13 bits/(image=pixel)
- 150 kHz frame rate
- 1.95 Mbit/(s•pixel)

Per ADC Block:

1 Mpix:

16 pixel/ADC

□ 31.2 Mbit/ADC block

The 'Great Flood':

4 Gbit/(s=2048pixel)

256 GB/s Ulrich Trunk | DESY Joint instrumentation Seminar | 14 July 2023

Per MGBT Link:

- 128 ADC blocks
- 2048 pixel
- 64b/66b encoding
- 3.9935 Gbit/(s•link) input
- 📮 4.1184 Gbit/(s•link) output 😊

ASIC :

- **100µm** \times 100µm pixel size
- 128 × 128 pixels
- 12.8mm × 12.8mm size
- 16384 pixels
- 💄 8 MGBT links 읭 -

Low enough to work with the Timepix4 GWT transceiver (IP block)

- Some margin to run faster than 150 kHz
- Lower requirements on PCB design

Timepix4 GWT @5 Gbit/s X. Llopart, On behalf of the Medipix4 Collaboration 11 th February 2022 CFRN seminar

Too many!

- 96 MGBT links for an Lambda-sized (6×2 chip) Module
- □ FPGAs with SoC are all \leq 96 GTH/GTY TX
- Only Xilinx VU13P has 128 GTH/GTY TX,

but no SoC

Sensor &

6×2 chip module

Readout board (w. SoC FPGA)

37

Partitioning, Chiplets & Readout Electronics CORDIA

Partitioning, Chiplets & Readout Electronics CORDIA

 Final chip size is still under discussion Multiple of (16 × 128) pixel = 2048 pixels Chains of POP erabits sturged 						
)				
Available sensor sizes						

TimePix 4 sized chips	Chip size (pixl)	# of 5 Gbit links	Smallest reasonable FEM	FEM size (pixel)	# of FireFly TX (12 ch)	256 x 768 pix module size (chips)
	128 × 128	8	2 × 3	256 × 384	6	2 × 6
	128 × 192	12	2 × 1	256 × 192	2	2 × 4
	256 × 192	24	1×1	256 × 192	2	1 × 4
	256 × 224*	28	1 × 3	256 × 672	7	n/a

*limited by reticle size

Summary

C RDIA

CoRDIA – Continuous Readout Digitizing Imager Array - is...

- Targeted to DL Synchrotron sources (like PETRA IV)
- CW FELs (future CW Mode of European XFEL)
- Hybrid Pixel Detector
- Charge Integrating & dynamic gain switching
- 📮 Pixel size 110μm × 110μm
- Continuous Frame Rate $f_{FR} \approx 150$ kHz (≥ 100 kHz)
- On-chip digitisation @ ≥ 10 bit

- All fundamental components exist
 - FE & ADC on test chips
 - MGBT readout on TimePix 4
- (Component) test chips show good performance
- Test of pixel blocks (with ADC) is ongoing
- Implementation of MGBT readout is in progress
- □ Full-size chips for detectors at PETRA IV ≈2027
- CW-FEL version with higher analogue performance ready later for future CW operation of Eu.XFEL

C RDIA

Thank you for your Attention!

And Thanks to my Fellow 'CoRDIAns': Heinz Graafsma, Mohamed Lamine Hafiane, Alexander Klyuev, Hans Krüger, Sabine Lange, Torsten Laurus, Alesandro Marras, David Pennicard, Tianyang Wang, Cornelia 'Trixi' Wunderer

