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OUTLINE

- Topic of this presentation: use machine learning approach, a convolutional neural network,
to reconstruct the Breit-Wheeler spectrum in LUXE electron-laser interaction

- Introduction

- Baseline results of the 20-layer ECAL from the conventional method (EnergyFlow)
and the neural network

- Neural network result obtained with electromagnetic background

. Neural network results from ECAL with fewer layers
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H E B R E IT _ - One of LUXE interactions is between photons

from high power laser and high energy electrons

« In which, non-linear Breit-Wheeler process
creates electron-positron pairs

- Key measurement: energy spectrum of positrons
from Breit-Wheeler pairs

e e

e_ - ‘/ -~ { : il e.

Schematic diagrams for the Compton process (e +nyr — €' ++) and the Breit-Wheeler process (y+ny, — ee™)
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EXPERIMENTAL SETUP

positrons are measured with trackers and the ECAL
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DATASET

K-fold method

(k =9)

21 June 2023

Training

Validation

Fold
1st

8

re) 2nd

L

X

» 3rd

-

O

I

;._g 4th

¢

5th

- The data the Neural Network was

trained on was provided by LUXE
Monte-Carlo generator IPstrong and
geometrical simulation GEANT4

- Not updated to the newer
Ptarmigan due to lack of
samples

- Machine learning is based on a

convolutional neural network (CNN)

« The k-fold method, which gives the

most unbiased estimates, is used to
calculate the uncertainty

- Training with four fifths of all bunch-

crossings (1 BX is called 1 "event”)
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CONVENTIONAL METHOD:
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A method presented in the CDR on the assumptions: : 4

x (pad)

showers develop around a known e* trajectory, and

a known calibration ratio between e* energy and its
deposits

positrons
from the IP

Number

The number of positrons is estimated by assigning the Eg, of a
pad to the e* energy bin

building a dependency between pad and e* energy,

collecting the deposits on a pad,

8§ 9 10 11 12 13

calculating the positron number contributed by the pad, and Energy

going over the whole ECAL
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Essentially a hand-written neural
network connecting the Eg,, image with
energy bin by physics knowledge and
assumptions

A convolution between the true energy
spectrum and a smeared reconstruction

The method performs fairly with the
ECAL-P in CDR

Difficulties with few-layer ECAL when
the leakage is important and the
sampling is insufficient
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train 10ss vs. test 10ss
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fewer layers of ECAL and to the background
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ERROR PROJECTION
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CALIBRATION RATIO

Defined as the ratio between positron energy and the total energy deposit inside the ECAL
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RECONSTRUCTION

WITH BACKGROUND
AND FEWER LAYERS

Background is contributed from electromagnetic processes, with

random combinationsto ~1000 samples from a 7-BX simulation



SPECTRUM
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SPECTRUM
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RECONSTRUCTION ERROR

20-LAYER ECAL
WITHOUT THE BACKGROUND
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RECONSTRUCTION ERROR

10-LAYER ECAL
WITH THE BACKGROUND
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ERROR PROJECTION
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ERROR PROJECTION
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CALIBRATION RATIO
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CALIBRATION RATIO
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CONCLUSION

- Calculating the Breit-Wheeler Energy spectrum for many positrons is not an easy task
. There are classical methods which needs all the layers and data

« With our ML approach we are able to reconstruct the energy spectrum with the background
and without the need of all the layers

- We need to add more data in the future:
- Hadronic background
- Ptarmigan spectrum

.+ Source codes available at GitHub:
https://github.com/nirzaa/particles_repo/tree/paper 3micron_kfold
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