Optimization of V-finding at a future Higgs factory

Final summer student presentations

Sara Aumiller Hamburg, 7. September 2023

HELMHOLTZ

ILC and ILD

An overview

The International Linear Collider (ILC)

- Proposed linear accelerator under political consideration in Japan
- Center-of-mass energy: 250-500 GeV.
- Two proposed detectors: ILD and SiD

The International Large Detector (ILD)

- Multipurpose detector specialized on using Particle Flow Algorithms (PFA)
- Central tracker: time-projection chamber (TPC) which allows continuous tracking & measurement of the specific energy loss (dE/dx)

Physics Program at ILD

Motivation of my topic

Finding new physics with e.g.

- strange-Yukawa coupling $(H \rightarrow s \bar{s})$ (see <u>https://arxiv.org/abs/2203.07535</u>)
- *W* and *Z* hadronic branching fractions
- s-channel forward-backward asymmetry (Z → s s̄) (see https://arxiv.org/abs/2306.11413)

ILD prerequisites:

- \rightarrow high-performance jet tagging!
- → strange tagging requires identifaction of strange particles!

K_S^0 and Λ can be found via: **V0-finding**

Reconstruction of neutral particles V⁰ at ILD

With iLCsoft

- Marlin processor: *V*⁰- Finder
- For every track pair in tracking detectors: Calculation of point of closest approach between two tracks $\rightarrow V^0$ candidate
- Determination of particle ID through testing rest mass hypotheses of different particles $i \in (\gamma, K_S^0, \Lambda, \overline{\Lambda})$ with $\min(\Delta m = |m_{inv} m_i|)$

Analysis of the V⁰- Finder

Research question

How well does the V^0 -Finder perform? Can we possibly improve it?

Investigations:

- Purity of the V^0 Finder
- Efficiency of the *V*⁰- Finder
- PID condition

Definitions

Efficiency

= Correctly identified reconstructed V^0 / all MC V^0

"How many MC V⁰ are correctly identified?"

Purity

= Correctly identified reconstructed V^0 / all reconstructed V^0

"How many reconstructed V^0 are coming from MC V^0 of the same kind?"

Simulated Data

ILD Large MC production (GEANT4-based)

s-channel $q\bar{q}$ process (2-fermion-Z-hadronic)

 $\sim 200 \ 000 \ V^0$

Status quo

Observation: There are MC Photons among reconstructed K_S^0 ! (0.986%)

PID via mass condition

Reconstructed K_S^0 : K_S^0 vs. γ separation

- Distinction between K_S^0 and γ through test of invariant masses
- If $\left| m_{inv} m_{K_S^0} \right| = \Delta m_{K_S^0} < \Delta m_{\gamma}$, V^0 is identified as K_S^0 and vice versa

DESY. | V0Analyzer | Sara Aumiller | sara.aumiller@tum.de | 4. September 2023

K_S^0 vs. γ separation

An other approach: Bethe-Bloch

- Distinction between K_S^0 and γ through amount of ionisation of the decay products in TPC (dE/dx)
- Description via Bethe-Bloch formula \rightarrow Improvement of V^0 -Finder?

PID via Bethe-Bloch

DESY. | V0Analyzer | Sara Aumiller | sara.aumiller@tum.de | 4. September 2023

Combining mass and Bethe-Bloch condition Method

Combining mass and Bethe-Bloch condition

DESY. | V0Analyzer | Sara Aumiller | sara.aumiller@tum.de | 4. September 2023

Combining mass and Bethe-Bloch condition

Method: the cut

- Red regions: Bethe-Bloch condition better
- Blue regions: mass condition better

→ Cut: Use mass condtion in blue areas, Bethe-Bloch condition otherwise!

PID via mass and Bethe-Bloch conditions

DESY. | V0Analyzer | Sara Aumiller | sara.aumiller@tum.de | 4. September 2023

Back to the motivation: K_S^0 purity

0.986% MC photons of reco. K_S^0

0.072% MC photons of reco. K_S^0

→ Improvement: Factor of 13.6

Conclusion

In the middle of the journey...

Summary

- Two new PID methods implemented into Marlin
 V⁰-Finder, which are ready to use
- Improvement of purity and efficiency of V⁰ Finder
- Personal highlight: Improvement of K_S^0 purity regarding photons by a **factor of 13.6**

Outlook

- Other combinations of using mass and Bethe-Bloch condition
- Boosted Descicion Tree (BDT)?
- Investigating Λ and $\overline{\Lambda}$

Contact

Deutsches Elektronen-Synchrotron DESY Sara Aumiller FTX, SLB <u>sara.aumiller@desy.de</u> / sara.aumiller@tum.de

www.desy.de

Why not using calorimeter information?

Insights to reconstruction at ILD

- Tracking reconstruction happens
 before calometry
- No particle flow objects yet
- *V*⁰ are input to the particle flow alogrithm (Pandora)

Future consideration: Implemention of

V⁰ - finding in Pandora

→ *much* work needed

Let's build ILC first ;)

```
<!-- Tracking reconstruction -->
condition=""/>
  <processor name="MySiliconTracking_MarlinTrk" condition=""/>
  <processor name="MyForwardTracking" condition="" />
cessor name="MyTrackSubsetProcessor" condition="" />
  <processor name="MyFullLDCTracking_MarlinTrk" condition="" />

·····cessor name="MyCompute_dEdxProcessor" condition="" />

  <processor name "MyV0Finder" ondition="" />
  <processor name="MVKinkFinder" condition="" />
cessor name="MyRefitProcessorKaon" condition="" />
cessor name="MyRefitProcessorProton" condition="" />
www.k!-- Ecal digitizers -->
cessor name="MergeCollectionsEcalBarrelHits" condition="" />
cessor name="MergeCollectionsEcalEndcapHits" condition="" />
  cprocessor name="MyEcalBarrelDigi" condition="" />

····cessor name="MyEcalBarrelReco" condition="" />

condition=""/>
<code condition = "MyEcalEndcapDigi" condition = " />
  <processor name="MyEcalEndcapReco" condition="" />
condition="" />
cessor name="MyEcalRingDigi" condition="" />
www.kprocessor.name="MyEcalRingReco".condition=""/>
condition=""'/>
  <processor name="MyHcalBarrelReco" condition="" />
<core condition=""/>
<condition=""/>
cessor name="MyHcalRingDigi" condition="" />
<core condition="" />

Fcal digitizers -->

condition=""/>
<code condition=""/>
condition=""/>
<!-- Muon digitizer(s) -->
www.sprocessor_name="MyDDSimpleMuonDigi" condition=""/>
<!-- Particle flow reconstruction -->
cprocessor name="MyDDMarlinPandora") condition="" />
```

K_S^0 purity Investigation of the detector geometry

