FE Analysis of Trigger Modules

Andreas Mussgiller Tracker Upgrade Weekly Meeting 05/04/2011

Trigger Module

- > 5 cm strips
- > hybrids to both sides of the sensor
- Each hybrid handles signals from both sensors
- > 16 chips in total

Trigger Module - Basic Design

Thermal FE Analysis of Basic Design

- > 100mW consumed by sensor (25mW in FE model)
- > 2W consumed by chips (500mW in FE model)
- > Hybrid made of Endicott Corel-Z with $\lambda = 0.3 \; W/m \cdot K$
- No dedicated heat management for chips

Trigger Module - TPG Heat Spreader Design

Thermal FE Analysis of TPG Heat Spreader Design

- > 100mW consumed by sensor / 2W consumed by chips
- > Hybrid made of Endicott Corel-Z with $\lambda = 0.3 \; \mathrm{W/m \cdot K}$
- > Bottom eTPG strip serves as heat spreader
- > Bottom eTPG strip has gap to allow bonding from bottom sensor to hybrid

Trigger Module - PGS Heat Spreader Design

PGS - Pyrolitic Graphite Sheet

> From Panasonic specs:

Dimensions in mm (not to scale)

Dimension of representative

Part No.	Dimension X (Short)*	Dimension Y (Long)*	Thickness (mm)	Y(mm)
EYGS182310	180±5 mm	230±5 mm	0.10±0.03, 0.07±0.015	(mm)
10 EYGS121807 03	115±5 mm	180±5 mm	0.10±0.03, 0.07±0.015, 0.025±0.010	
10 EYGS091207 03	90±5 mm	115±5 mm	0.10±0.03, 0.07±0.015, 0.025±0.010	

Characteristics

Characteristics		Specification	Specification	Specification
Thickness		0.10 ± 0.03 mm	0.07 ± 0.015 mm	0.025 ± 0.010 mm
Density		0.85 g/cm ³	1.21 g/cm ³	1.90 g/cm ³
Thermal conductivity	a-b plane	700 W/(m·K)	1000 W/(m·K)	1600 W/(m⋅K)
Electrical conductivity		10000 S/cm	10000 S/cm	20000 S/cm
Extensional strength		19.6 MPa	22.0 MPa	30.0 MPa
Expansion coefficient	a-b plane	9.3 × 10 ⁻⁷ 1/K	9.3 × 10 ⁻⁷ 1/K	9.3 × 10 ⁻⁷ 1/K
	c axis	3.2 × 10 ⁻⁵ 1/K	3.2 × 10 ⁻⁵ 1/K	3.2 × 10 ⁻⁵ 1/K
Heat resistance		400 °C		
Bending(angle 180,R5)		10000 cycles		

*Values are for reference, not guaranteed.

Design and specifications are each subject to change without notice. Ask factory for the current technical specifications before purchase and/or use. Should a safety concern arise regarding this product, please be sure to contact us immediately.

Thermal FE Analysis of PGS Heat Spreader Design

- > Tmax for 70um and 100um PGS thickness very similar
- > Thicker PGS layer needed for better thermal performance

Trigger Module - Double PGS Heat Spreader Design

Thermal FE Analysis of Double PGS Heat Spreader Design

- Heat flux through support strip does not require use of TPG
- Calculation performed for CFRP support strip with UD and +45°/-45°/ 0/-45°/+45° structure
- > Tmax for UD and +45°/-45°/0/-45°/+45° strips similar
 - > Heat flux mostly through PGS

Thermal FE Analysis - Summary

- > Basic design seems best wrt. deformation due to symmetry> However...
 - > Heat management for chips must be provided
 - > Additional heat spreader layers break symmetry
- > PGS could be an alternative to TPG
 - > commercially available
 - > available in 25um/70um/100um
 - > we would need it a bit thicker
 - have to check if this could be made available

Mechanical FE Analysis

> Z Displacement of nodes on sensors for double PGS layer Design

Mechanical FE Analysis - Results

Design	Max Z displacement of sensors
TPG Heat Spreader	-148um
PGS Heat Spreader (70um)	-146um
PGS Heat Spreader (100um)	-144um
Double PGS Heat Spreader (UD)	-194um
Double PGS Heat Spreader (+45°/-45°/0/-45°/+45°)	-81um

- Symmetry does not prevent deformation of sensors
 - It only prevents bending of hybrid
- Deformation of sensor caused by different CTEs of support strip, sensor and hybrid

Analysis of Bending of Sensors

DES

Analysis of Bending of Sensors

DES

Summary

