A further look at pysics analysis at HALHF - beam-beam effects

Mikael Berggren¹

¹DESY, Hamburg

FC@DESY Meeting, July 7, 2023

Image: A matrix

Hybrid Asymmetric Linear Higgs Factory (HALHF)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^-
 ightarrow \mu\mu$.
 - Track momentum resolution.

<ロ> <同> <同> < 回> < 回> < 回> = 三

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^-
 ightarrow \mu\mu$.
 - Track momentum resolution.

<ロ> <同> <同> < 回> < 回> < 回> = 三

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^- \rightarrow \mu\mu$.
 - Track momentum resolution.

First look at the experimental implications of the HALHF.

- Generate with Whizard. Settings:
 - $E(e^{-}) = 500 \text{ GeV}, E(e^{+}) = 31 \text{ GeV} \Rightarrow E_{cm} = 2\sqrt{500 \cdot 31} = 249 \text{ GeV}.$
 - No beam-spectrum (not yet available), no crossing angle, no polarisation.
 - But ISR the worst spoiler of the recoil mass is included.
 - Simulate ILD or ILD' with SGV.
- Look at
 - Golden process: $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
 - $e^+e^- \rightarrow \mu\mu$.
 - Track momentum resolution.

(日)

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

-

イロン イヨン イヨン イヨン

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - cos θ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

Image: A matrix

25000 20000 15000 5000 910 115 120 125 130 130 135 135 135 135 135

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

- Look at $e^+e^- \rightarrow ZH, Z \rightarrow \mu\mu$.
- Red-dash: HALHF, black-solid: same conditions, but E(e⁻) = E(e⁺) = 124.5
 - $\cos \theta$ of the muons ...
 - *M_Z* ...
 - and the recoil mass.

Preliminary uptake

- Look at e+
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

Preliminary uptake

- Look at e⁺
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

125

130 13 M_{Recoil} [GeV]

Preliminary uptake

- Look at e⁺
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

104

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

125

130 13 M_{Recoil} [GeV]

Preliminary uptake

- Look at e⁺
- Red-dash: conditions,
 - $\cos \theta$ of
 - *M_Z* ...
 - and the

• The problem is not acceptance: almost all μ:s are seen.

- Rather, it is that they are largely seen in the much weaker forward tracking.
- This can't be ameliorated with less material or better point-resolution: the problem is the lever-arm!
- So, either the forward region needs to be made longer, or the B-field must be modified ...

Modify detector length (Easy to do with SGV)

ILD at ILC and ILD at HALHF

- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

Modify detector length (Easy to do with SGV)

- ILD at ILC and ILD at HALHF
- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

Modify detector length (Easy to do with SGV)

- ILD at ILC and ILD at HALHF
- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

Modify detector length (Easy to do with SGV)

- ILD at ILC and ILD at HALHF
- and ILD made twice longer in the forward at HALHF
- and ILD made twice longer in the forward, but reduce TPC radius from 1.8 m to 1.55 m ⇒ about the same size (Solenoid volume, area of detectors).
- Long-ILD would give a recoil-mass peak about 80% lower ⇒ very roughly S/B 20% worse ⇒ ~ 60% more integrated luminosity needed.

What about fermion pairs, and things like A_{FB}?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

3

What about fermion pairs, and things like AFB ?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

What about fermion pairs, and things like AFB ?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

What about fermion pairs, and things like AFB ?

- Generate $e^+e^- \rightarrow \mu^+\mu^-$, and look at Pseudorapidity of μ^+ (dashed) and μ^- (solid), separately. Black is ILD@ILC, Red is longer, R-reduced ILD at HALHF.
- In the lab-frame ...
- ... or the CM frame.
- ⇒ The symmetry is broken loss in the forward, but gain in the backward -Maybe that partly compensates ? Also slightly wider ...

• Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p

- Now, in HALHF, but look at $\sigma(p)$ vs. p

Image: Image:

- Standard ILD-at-ILC: $\sigma(1/p_T)$ vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM .
 - ... and forward.

Image: A matrix

- Standard ILD-at-ILC: σ(1/p_T) vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM .
 - ... and forward.

- Standard ILD-at-ILC: σ(1/p_T) vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM ...
 - ... and forward.

- Standard ILD-at-ILC: σ(1/p_T) vs. p
- To compare apples with apples with boosted system: look at σ(p) vs. p
 - Not $\propto p^2$, rather to P^1 .
 - ... because M.S. dominates all over.
- Now, in HALHF, but look at σ(p) vs. p in the CM system: Apples with apples:
 - Backward in CM ...
 - ... and forward.

ILC and HALHF (forward)

Bhabha at HALHF

What about Bhabhas, the standard candle for luminosity measurement?

- Luminosity is a source of systematic errors everywhere.
- \Rightarrow need per mil level control.
- Need back-to-back coincidence at as low angles as possible.
- In ILD: LumiCal at 2-5 degrees, with only vacuum in front.
- $\bullet\,$ But with HALHF: already \sim 10 degrees in CM system outside acceptance...
- Need to study this ...

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Bhabha at HALHF

What about Bhabhas, the standard candle for luminosity measurement?

- Luminosity is a source of systematic errors everywhere.
- \Rightarrow need per mil level control.
- Need back-to-back coincidence at as low angles as possible.
- In ILD: LumiCal at 2-5 degrees, with only vacuum in front.
- But with HALHF: already \sim 10 degrees in CM system outside acceptance...
- Need to study this ...

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト …

Bhabha at HALHF

What about Bhabhas, the standard candle for luminosity measurement?

- Luminosity is a source of systematic errors everywhere.
- \Rightarrow need per mil level control.
- Need back-to-back coincidence at as low angles as possible.
- In ILD: LumiCal at 2-5 degrees, with only vacuum in front.
- But with HALHF: already \sim 10 degrees in CM system outside acceptance...
- Need to study this ...

- Assume wall-plug-to-beam efficiency is the same for any case.
- Energy-symmetric collisions clearly are the most efficient: No energy wasted in giving the final state kinetic energy.
- However, one can play with how many particles are accelerated on each side: The luminosity scales with the product of the bunch-charges.
- So decreasing the charges on the high-energy side, increasing on the low-energy one reduces the total beam-power.
- In the HALHF case, with $E_{high} = 16 \times E_{low}$, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

- Assume wall-plug-to-beam efficiency is the same for any case.
- Energy-symmetric collisions clearly are the most efficient: No energy wasted in giving the final state kinetic energy.
- However, one can play with how many particles are accelerated on each side: The luminosity scales with the product of the bunch-charges.
- So decreasing the charges on the high-energy side, increasing on the low-energy one reduces the total beam-power.
- In the HALHF case, with $E_{high} = 16 \times E_{low}$, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

- Assume wall-plug-to-beam efficiency is the same for any case.
- Energy-symmetric collisions clearly are the most efficient: No energy wasted in giving the final state kinetic energy.
- However, one can play with how many particles are accelerated on each side: The luminosity scales with the product of the bunch-charges.
- So decreasing the charges on the high-energy side, increasing on the low-energy one reduces the total beam-power.
- In the HALHF case, with $E_{high} = 16 \times E_{low}$, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

3

- Assume wall-plug-to-beam efficiency is the same for any case.
- Energy-symmetric collisions clearly are the most efficient: No energy wasted in giving the final state kinetic energy.
- However, one can play with how many particles are accelerated on each side: The luminosity scales with the product of the bunch-charges.
- So decreasing the charges on the high-energy side, increasing on the low-energy one reduces the total beam-power.
- In the HALHF case, with $E_{high} = 16 \times E_{low}$, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

3

• Assume wall-plug-to-beam efficiency is the same for any case.

Enorgy-sy	The question:	
wasted in	 Given that this is quite far from the known 	lo energy
However,		ated on each
side: The	• Does this work ?	larges.
So decrea	• At all, and in particular in a detector that	ing on the
low-energy	covers lower angles ?	

- In the HALHF case, with $E_{high} = 16 \times E_{low}$, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

• Assume wall-plug-to-beam efficiency is the same for any case.

•	Energy-sy	The question.	
	wasted in	 Given that this is quite far from the known 	lo chergy
٩	However, (side: The	ILC conditions	ated on each
		• Does this work ?	larges.
•	So decrea	 At all, and in particular in a detector that covers lower angles ? 	ing on the

- In the HALHF case, with E_{high} = 16 × E_{low}, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

(D) (A) (A) (A) (A) (A)

• Assume wall-plug-to-beam efficiency is the same for any case.

•	Enorgy-sy	i ne question:	lo oporav
	wasted in	• Given that this is quite far from the known	lo energy
٩	However, (side: The	 ILC conditions Does this work ? 	ated on each larges.
٩	So decrea	 At all, and in particular in a detector that covers lower angles ? 	ing on the

- In the HALHF case, with E_{high} = 16 × E_{low}, the optimum is 4, i.e. increase the positron bunch charge by a factor 4, decrease the electron one to 1/4.
- This actually gives the same beam power as the energy-symmetric case !
- This was considered too aggressive, so a factor 2 was proposed. This gives a beam-power 25% above the symmetric case.

(D) (A) (A) (A) (A) (A)

- The strong fields inside the bunches generate a large flux of photons.
- These generate e⁺e⁻ pairs.
- Lots of pairs: SiD simulation ...
- The pairs concentrate along a curve $p_{\perp} \propto \frac{1}{\Theta}$
- \Rightarrow Plot $\lg p_{\perp}$ vs. $\lg \Theta$: ILC@250 with "SetA" parameters, and ILD.
- Where the sharp edge is depends strongly on the beam-parameters (emittace, beta-function, bunch-charge and -length...)
- This MUST stay in the beam-pipe !
- Tool: GuineaPig by D. Schulte.

- The strong fields inside the bunches generate a large flux of photons.
- These generate e⁺e⁻ pairs.
- Lots of pairs: SiD simulation ...
- The pairs concentrate along a curve $p_{\perp} \propto \frac{1}{\Theta}$
- \Rightarrow Plot lg p_{\perp} vs. lg Θ : ILC@250 with "SetA" parameters, and ILD.
- Where the sharp edge is depends strongly on the beam-parameters (emittace, beta-function, bunch-charge and -length...)
- This MUST stay in the beam-pipe !
- Tool: GuineaPig by D. Schulte.

Image: Image:

- B - - B

- The strong fields inside the bunches generate a large flux of photons.
- These generate e⁺e⁻ pairs.
- Lots of pairs: SiD simulation ...
- The pairs concentrate along a curve $p_{\perp} \propto rac{1}{\Theta}$
- \Rightarrow Plot lg p_{\perp} vs. lg Θ : ILC@250 with "SetA" parameters, and ILD.
- Where the sharp edge is depends strongly on the beam-parameters (emittace, beta-function, bunch-charge and -length...)
- This MUST stay in the beam-pipe !
- Tool: GuineaPig by D. Schulte.

(a) (b) (c) (b)

Image: Image:

- The strong fields inside the bunches generate a large flux of photons.
- These generate e⁺e⁻ pairs.
- Lots of pairs: SiD simulation ...
- The pairs concentrate along a curve $p_{\perp} \propto rac{1}{\Theta}$
- \Rightarrow Plot lg p_{\perp} vs. lg Θ : ILC@250 with "SetA" parameters, and ILD.
- Where the sharp edge is depends strongly on the beam-parameters (emittace, beta-function, bunch-charge and -length...)
- This MUST stay in the beam-pipe !
- Tool: GuineaPig by D. Schulte.

- The strong fields inside the bunches generate a large flux of photons.
- These generate e⁺e⁻ pairs.
- Lots of pairs: SiD simulation ...
- The pairs concentrate along a curve $p_{\perp} \propto rac{1}{\Theta}$
- \Rightarrow Plot lg p_{\perp} vs. lg Θ : ILC@250 with "SetA" parameters, and ILD.
- Where the sharp edge is depends strongly on the beam-parameters (emittace, beta-function, bunch-charge and -length...)
- This MUST stay in the beam-pipe !
 Tool: GuineaPig by D. Schulte.

글 🕨 🖌 글

- The strong fields inside the bunches generate a large flux of photons.
- These generate e⁺e⁻ pairs.
- Lots of pairs: SiD simulation ...
- The pairs concentrate along a curve $p_{\perp} \propto rac{1}{\Theta}$
- \Rightarrow Plot lg p_{\perp} vs. lg Θ : ILC@250 with "SetA" parameters, and ILD.
- Where the sharp edge is depends strongly on the beam-parameters (emittace, beta-function, bunch-charge and -length...)
- This MUST stay in the beam-pipe !
- Tool: GuineaPig by D. Schulte.

- Lumi: 0.80 μb⁻¹/BX = "ILC"×0.75 . 52k pairs, w/ 341 TeV
- Power: ILC×2.13
- Forward
- Still not good ...

- Lumi: 0.80 μb⁻¹/BX = "ILC"×0.75 . 52k pairs, w/ 341 TeV
- Power: ILC×2.13
- Forward
- Still not good ...

- Lumi: 0.75 μb⁻¹/BX = "ILC"×0.71. 48k pairs, w/ 185 TeV
- Power: ILC×2.13
- Forward
- OK !

- Lumi: 0.75 μb⁻¹/BX = "ILC"×0.71. 48k pairs, w/ 185 TeV
- Power: ILC×2.13
- Forward
- OK !

- Charges: 1.33 and 3 \times 10¹⁰ particles per bunch.
- Lumi: 0.71 μb⁻¹/BX = "ILC"×0.67. 47k pairs, w/ 215 TeV
- Power: ILC×1.52
- Forward, 3.5T
- \sim OK, but
- Forward, 5T
- OK.
- Forward, 5T, longer

 $\bullet \ \text{Also} \sim \text{OK}$

- Charges: 1.33 and 3 \times 10¹⁰ particles per bunch.
- Lumi: 0.71 μb⁻¹/BX = "ILC"×0.67. 47k pairs, w/ 215 TeV
- Power: ILC×1.52
- Forward, 3.5T
- \sim OK, but
- Forward, 5T
- OK.
- Forward, 5T, longer
- $\bullet \ \text{Also} \sim \text{OK}$

Charges: 1.33 and 3 × (d.5 **6**) **60**1 10¹⁰ particles per bunch. Lumi: 0.71 μb⁻¹/BX = "ILC"×0.67. 47k pairs, w/ 215 TeV -1.5 Power: ILC×1.52 Forward, 3.5T -2 $\bullet \sim OK$, but Forward, 5T -2.5 Forward, 5T, longer -3 • Also $\sim OK$

-1.5

-2

-0.5

5 0 log(Θ)

Charges: 1.33 and 3 × (d.5 **6**) **60**1 10¹⁰ particles per bunch. Lumi: 0.71 μb⁻¹/BX = "ILC"×0.67. 47k pairs, w/ 215 TeV -1.5 Power: ILC×1.52 Forward, 3.5T -2 $\bullet \sim OK$, but Forward, 5T -2.5 • OK. Forward, 5T, longer -3 • Also $\sim OK$

-1.5

-2

-0.5

5 0 log(Θ)

- Charges: 1.33 and 3×10^{10} particles per bunch. • Lumi: 0.71 μ b⁻¹/BX = 10.5 • ILC"×0.67. 47k pairs, w/ 215 TeV • Power: ILC×1.52 • Forward, 3.5T • \sim OK, but • Forward, 5T • -2.5
 - Forward, 5T, longer

• Also $\sim OK$

Charges: 1.33 and 3 × (d.5) 001 10¹⁰ particles per bunch. • Lumi: 0.71 $\mu b^{-1}/BX =$ "ILC"×0.67. 47k pairs, w/ 215 TeV -1.5 Power: ILC×1.52 Forward, 3.5T -2 $\bullet \sim OK$, but Forward, 5T -2.5 Forward, 5T, longer -3 • Also $\sim OK$

-2

-1.5

-0.5

5 0 log(Θ)

 With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.

But more work needed:

- Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
- Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres - but still some issues with Whizard (?)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

 With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.

But more work needed:

- Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
- Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
- Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
- More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres - but still some issues with Whizard (?)

- With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.
- But more work needed:
 - Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
 - Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
 - Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
 - More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres - but still some issues with Whizard (?)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.
- But more work needed:
 - Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
 - Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
 - Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
 - More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres - but still some issues with Whizard (?)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.
- But more work needed:
 - Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
 - Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
 - Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
 - More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres - but still some issues with Whizard (?)

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

- With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.
- But more work needed:
 - Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
 - Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
 - Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
 - More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres - but still some issues with Whizard (?)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

- With a slightly less ambitious sharing of bunch-crages, and an ambitious detector design, a HALHF design with 2/3 of the ILC luminousity and with 50 % higher beam-power seems doable.
- But more work needed:
 - Beam-spectrum but already in hand with the GuineaPig setup (needs more stat, and post-treatment)
 - Luminosity measurement: How to do that when Bhabhas are not back-to-back ?
 - Modify B-field in the forward (toroidal, di-pole, ...). And what would that do the pairs ...
 - More physics implications: Flavour tag, searches,
 - Still some tools development for asymmetric beams SGV now handles detectors differen in the two hemi-spheres but still some issues with Whizard (?)

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●