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The unfolding method based on iterative application of Bayes’ theorem described by D’Agostini [1] (though
similar to the iterative procedure of Mülthei and Schorr [2]) is a convenient method, popular in Particle
Physics.

Measurement uncertainties

As with all unfolding methods, it is important to understand the uncertainties in the unfolded distribution,
and especially the bin-to-bin correlations that ensue as a result of the regularisation process (in the Bayes
method without additional smoothing, regularisation comes about as a result of limiting the number of
iterations). In many cases, the largest source of uncertainty is from propagation of the measurement
uncertainties through the unfolding matrix.

D’Agostini ([1] section 4) gives the unfolded distribution (“estimated causes”), n̂(Ci), as the result of
applying the unfolding matrix, Mij , to the measurements (“effects”), n(Ej):

n̂(Ci) =
nE
∑

j=1

Mijn(Ej) (1)

where

Mij =
P (Ej |Ci)P0(Ci)

[
∑nE

l=1 P (El|Ci)][
∑nC

l=1 P (Ej|Cl)P0(Cl)]
(2)

and P (Ej|Ci) is the response matrix, ǫi ≡
∑nE

j=1 P (Ej |Ci) are the efficiencies, and P0(Cl) is the prior
distribution — initially arbitrary (eg. flat or MC model), but updated on subsequent iterations.

D’Agostini then calculates the covariance matrix, which here we call V (n̂(Ck), n̂(Cl)), by error propagation
from n(Ej), but assumes that Mij is itself independent of n(Ej). That is only true for the first iteration. For

subsequent iterations, P0(Ci) is replaced by n̂(Ci)/N̂true (N̂true ≡
∑nC

i=1 n̂(Ci)) from the previous iteration,
and n̂(Ci) depends on n(Ej) (eq. 1).

To take this into account, we compute the error propagation matrix

∂n̂(Ci)

∂n(Ej)
= Mij +

nE
∑

k=1

Mikn(Ek)

(

1

n0(Ci)

∂n0(Ci)

∂n(Ej)
−

nC
∑

l=1

ǫl

n0(Cl)

∂n0(Cl)

∂n(Ej)
Mlk

)

(3)

This depends upon the matrix ∂n0(Ci)
∂n(Ej)

which is ∂n̂(Ci)
∂n(Ej)

from the previous iteration. In the first iteration,

the second term vanishes (∂n0(Ci)
∂n(Ej)

= 0) and we get ∂n̂(Ci)
∂n(Ej)

= Mij .
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We can use the error propagation matrix to obtain the covariance matrix on the unfolded distribution

V (n̂(Ck), n̂(Cl)) =
nE
∑

i,j=1

∂n̂(Ck)

∂n(Ei)
V (n(Ei), n(Ej))

∂n̂(Cl)

∂n(Ej)
(4)

from the covariance matrix of the measurements, V (n(Ei), n(Ej)).

This new formula has been compared to the results of toy MC tests and agrees well. Without the new
second term, the error is underestimated if more than one iteration is used — by around 20% per iteration
in some cases.

D’Agostini takes a multinomial distribution for the bin contents, and hence

V (n(Ei), n(Ej)) = n(Ei)δij −
n(Ei)n(Ej)

N̂true

(5)

That describes a histogram with the fixed normalisation, ie. fixed total number of measured events. On
the other hand, in counting experiments common in particle physics, each bin is independently Poisson
distributed, with

V (n(Ei), n(Ej)) = n(Ei)δij (6)

Other, arbitrary, bin errors (perhaps even correlated) may also be used in equation 4.

Response matrix uncertainties

The response matrix, P (Ej|Ci), is usually estimated by Monte Carlo. If only limited MC statistics are
available, then there will be uncertainties on these terms. Their effect can be determined using

∂n̂(Ci)

∂P (Ej |Ck)
=

n0(Ci)n(Ej)

fjǫi

(

δik −
n0(Ck)

fj

)

(7)

where here fj ≡
∑nC

l=1 P (Ej |Cl)n0(Cl) is the folded prior. The covariance matrix due to these errors is
given by

V (n̂(Ck), n̂(Cl)) =
nE
∑

i,r=1

nC
∑

j,s=1

∂n̂(Ck)

∂P (Ei|Cj)
V (P (Ei|Cj), P (Er|Cs))

∂n̂(Cl)

∂P (Er|Cs)
(8)

where V (P (Ei|Cj), P (Er|Cs)) can be taken as multinomial, Poisson, or other distribution.

References

[1] G. D’Agostini, “A Multidimensional unfolding method based on Bayes’ theorem,” Nucl. Instrum.
Meth. A 362 (1995) 487.

[2] H. N. Mülthei and B. Schorr, “On an Iterative Method for the Unfolding of Spectra,” Nucl. Instrum.
Meth. A 257 (1987) 371.

2


