RF, SA, VNA, CB100 and more...

Analysis week Munich 2023

Topics (Part I):

- Transmission Line Theory
 - Coaxial cables
 - Wave propagation in a transmission line
 - The lossless line
 - Terminated lossless transmission line

Noise

- Noise Power and Equivalent Noise Temperature
- Y-Factor method (+amplifier noise)
- Equivalent Noise Ratio (ENR)
- LNA noise model

Transmission Line Theory

Transmission line Theory:

- Transmission lines may be a considerable fraction of the wavelength
- Voltages and current can vary in magnitude, phase and length

Circuit Theory:

- physical dimensions of the network are much smaller than the wavelength
- Voltages and currents do not vary

Coaxial Cables:

Coaxial cable diagram

Coaxial cable

- Invented in 1858 (Transatlantic Telegraph communication)
- Used to carry high frequency electrical signals with low loss
- EM signal exists only between the inner and outer conductors:
- Protection of the signal from external EM interferance

Telegrapher's equations:

Telegrapher's equations:

$$\begin{split} \frac{\partial v(z,t)}{\partial z} &= -Ri(z,t) - L \frac{\partial i(z,t)}{\partial t}, \\ \frac{\partial i(z,t)}{\partial z} &= -Gv(z,t) - C \frac{\partial v(z,t)}{\partial t}. \end{split}$$

- R = Resistence per length
- G = Conductance per length

Represent Loss

- L = Inductance per length
- C = Capacitance per length

Wave propagation in a Transmission line:

• Steady state Telegrapher's equations:

$$\frac{d^2V(z)}{dz^2} - \gamma^2V(z) = 0,$$

$$\frac{d^2I(z)}{dz^2} - \gamma^2I(z) = 0,$$

$$I(z) = 0$$

Propagation constant:

$$\gamma = \alpha + j\beta = \sqrt{(R + j\omega L)(G + j\omega C)}$$

Characteristic Impedance and lossless line:

$$Z_0 = \frac{R + j\omega L}{\gamma} = \sqrt{\frac{R + j\omega L}{G + j\omega C}},$$

$$\frac{V_o^+}{I_o^+} = Z_0 = \frac{-V_o^-}{I_o^-}.$$

$$I(z) = \frac{V_o^+}{Z_0} e^{-\gamma z} - \frac{V_o^-}{Z_0} e^{\gamma z}$$

Lossless line:

$$\gamma = \alpha + j\beta = j\omega\sqrt{LC}$$

$$V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{j\beta z},$$

$$I(z) = \frac{V_o^+}{Z_0} e^{-j\beta z} - \frac{V_o^-}{Z_0} e^{j\beta z}.$$

Terminated lossless line:

$$V(z) = V_o^+ e^{-j\beta z} + V_o^- e^{j\beta z}$$

$$I(z) = \frac{V_o^+}{Z_0} e^{-j\beta z} - \frac{V_o^-}{Z_0} e^{j\beta z}$$

Load Impedance:

$$Z_L = \frac{V(0)}{I(0)} = \frac{V_o^+ + V_o^-}{V_o^+ - V_o^-} Z_0$$

Voltage Reflection coefficient (Γ) :

$$\Gamma = \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Short Open Load:

$$\Gamma = \frac{V_o^-}{V_o^+} = \frac{Z_L - Z_0}{Z_L + Z_0}$$

Noise

- Resistor at temperature T
- Random motions of electrons in the resistor :
 - Small random voltage fluctuations at the terminals
 - Average value = 0
 - o RMS ≠ 0

$$V_n = \sqrt{\frac{4hf\ BR}{e^{hf/kT} - 1}},$$

Planck's black body Radiation law

Rayleigh-Jeans approximation:

h = Planck's constant

k = Boltzmann's constant

T = Temperature (K)

B = Bandwidth of the system (Hz)

f = Center frequency of the bandwidth (Hz)

 $R = resistance (\Omega)$

Approximation valid for Microwave frequencies

Simulating Noisy Resistor:

Power delivered to Load:

From the Rayleigh-Jeans approximation:

$$P_n = \left(\frac{V_n}{2R}\right)^2 R = \frac{V_n^2}{4R} = kTB,$$

Power delivered to Load

More general if we use impedance:

$$P_{\text{avg}} = \frac{1}{2} \text{Re} \{ V(z) I(z)^* \}$$

$$P_{\text{avg}} = \frac{1}{2} \frac{|V_o^+|^2}{Z_0} (1 - |\Gamma|^2),$$

Equivalent Noise Temperature:

Any source of white noise can be modeled as an equivalent thermal noise source, and characterized with an Equivalent Noise Temperature (Te)

$$T_e = \frac{N_o}{kB}$$

- No = Noise Power
- k = Boltzmann constant
- B = Bandwidth

Amplifiers:

Low Noise Amplifiers (LNA):

- The signal from the input is amplified by a factor G (gain)
- Our LNA → G=30dB (factor 1000)

- Amplifiers are also Noisy!
- Contribute to a considerable amount of power in our case (150 K at room Temperature)

How do we calculate this?

Y-factor method!

Measured data, Tamb=296 K

Noisy Amplifier (Y-factor method):

The simple case (Matched load)

$$N_1 = GkT_1B + GkT_eB$$
,

$$N_2 = GkT_2B + GkT_eB,$$

Define Y-factor:

$$Y = \frac{N_1}{N_2} = \frac{T_1 + T_e}{T_2 + T_e} > 1,$$

$$T_e = \frac{T_1 - YT_2}{Y - 1}$$

LNA Noise Temperature

Noisy Amplifier (Y-factor method):

The not so simple case (Mismatched load)

$$N_1 = GkT_1B + GkT_eB,$$

$$N_2 = GkT_2B + GkT_eB,$$

"New" Y-factor:

LNA Noise Temperature (mismatched load)

Excess Noise Ratio (ENR):

Two different ways of characterizing noise power:

- 1. Equivalent noise Temperature
- 2. Excess Noise Ratio

ENR (dB) =
$$10 \log \frac{N_g - N_o}{N_o} = 10 \log \frac{T_g - T_0}{T_0}$$

No, To — Noise power/temperature of generator

Ng, Tg — Noise power/temperature of 290 K

Noise Diode

LNA Noise Model:

The model has three free parameters which can be obtained by measuring the noise signal from the standards: Short, Open and Load (SOL) + Mismatch (as crosscheck). For this we use the Spectrum analyser, SA.

The other parameters: Length of transmission line, Impedance, Gain, can be obtained through reflectivity measurements. For this we use the Vector Network Analyser, VNA.

Break?

Topics (Part II):

- SA and VNA measurements
 - Spectrum Analyzer (SA)
 - Y-factor method
 - SA measurements
 - VNA measurements

- CB100 setup and results
 - CB100 at Morpurgo
 - Different measurements
 - o 2GHz and 40 MHz frequency range
 - O How do we get to an exclusion limit?

The Spectrum Analyzer (SA):

Parameters:

- Center/span
- Reference Level
- Resolution Bandwidth
- Video Bandwidth

Baseline Measurement:

- The Spectrum analyser has some intrinsic noise (baseline)
- This is much higher than the noise of any device under test (DUT): Short, Open, Load, Booster

We need an LNA in order to amplify the signal and be able to see its spectrum

Power to Temperature: step by step

- 1. Measure Baseline (intrinsic Noise of SA)
- 2. Measure noise with Diode (on and off)
- 3. Y-factor to obtain Temperature of LNA + Power to Noise conversion
- 4. One to one conversion between Power per bin to Temperature

The Vector Network Analyzer (VNA):

Computes reflectivity and transmissivity through the DUT:

- s-parameters
- reflectivity (Γ)
- smith chart

Allows us to obtain certain parameters for our model:

- Gain of LNA
- electrical length of DUT

The Vector Network Analyzer (VNA):

- Booster reflectivity measurement
- LNA: gain (S₂₁), reflectivity (S₁₁), impedance,length
- Standards (SOLM)

CB100 Setup and Measurements

Setup of CB100:

Spectrum Analyser has intrinsic noise. We need an LNA to surpass this <u>noise baseline</u>

Spectrum Analyser has intrinsic noise. We need an LNA to surpass this <u>noise baseline</u>

 <u>LNA model</u> has some free parameters. We use standards (Short, Open, Load and Mismatch) to fix these parameters

Spectrum Analyser has intrinsic noise. We need an LNA to surpass this <u>noise baseline</u>

 <u>LNA model</u> has some free parameters. We use standards (Short, Open, Load and Mismatch) to fix these parameters

 LNA has intrinsic noise. Use <u>Y-factor</u> to obtain LNA noise and noise power to noise Temperature conversion

• Spectrum Analyser has intrinsic noise. We need an LNA to surpass this **noise baseline**

 <u>LNA model</u> has some free parameters. We use standards (Short, Open, Load and Mismatch) to fix these parameters

LNA has intrinsic noise. Use <u>Y-factor</u> to obtain LNA noise and noise power to noise Temperature conversion

7 measurements in total!

CB100 Simulations and Measurements:

- 100 mm Sapphire Discs (ε = 9.4)
- Discs in fixed Position
- Optimized for Boost factor β^2 ~ 2000??
- 40 MHz bandwidth

2 GHz Measurements:

- Gives a better perspective off frequency dependence of system
- Comparison with other measurements allows to see if something changed in booster

40 MHz Measurements:

- Long term measurement of 40MHz
- Center frequency ~ 18,97 GHz
- Booster dip in the middle of 40 MHz window

18.955 18.960 18.965 18.970 18.975 18.980 18.985 18.990 frequency [GHz]

18.955 18.960 18.965 18.970 18.975 18.980 18.985 18.990 frequency [GHz]

What does an Axion look like?

 $\Delta v \approx 20 \text{ kHz}$

18.955 18.960 18.965 18.970 18.975 18.980 18.985 18.990 frequency [GHz]

Sensitivity of CB100 2023?

$$C_{a\gamma} = 234.3 \left(\frac{1m^2}{A}\right)^{1/2} \left(\frac{1.6T}{B_e}\right) \left(\frac{300MeV}{\rho_a}\right)^{1/2} \left(\frac{2200}{\beta^2}\right)^{1/2} \left(\frac{T_{sys}}{410}\right)^{1/2} \left(\frac{\Delta\nu}{20kHz}\right)^{1/4} \left(\frac{4days}{\Delta t}\right)^{1/4} \left(\frac{SNR}{5}\right)^{1/2}$$

