ADS model of CB100

MADMAX Analysis week

David Leppla-Weber Munich, 25.07.2023

Overview

- Theory
 - Booster simulation
 - Noise theory
- ADS model
 - Parameter overview
 - Current status
 - Discussion points
 - Implementation details

Booster theory

Most simple 1D simulation

> Uniform electric field with right and left moving parts R_r and L_r propagated by $k=\omega n_r$ in every region r

$$E_r = R_r \exp(+ikz) + L_r \exp(-ikz) + E_{a,r}$$

- lacksquare Couples perfectly to uniform axion induced E-field E_a
- Easily solved by eg transfer matrix formalism
- > Can calculate reflection, transmission and boostfactor

1D booster schematic

Most simple 1D simulation

> Uniform electric field with right and left moving parts R_r and L_r propagated by $k=\omega n_r$ in every region r

$$E_r = R_r \exp(+ikz) + L_r \exp(-ikz) + E_{a,r}$$

1D booster schematic

- lacksquare Couples perfectly to uniform axion induced E-field E_a
- Easily solved by eg transfer matrix formalism
- Can calculate reflection, transmission and boostfactor

In the real world, R_r and L_r are functions of (x,y,z) and propagation is influenced by boundary conditions!

Circular waveguides

- Determine fields by solving Maxwells equations with circular boundaries
 - → Infinite solutions (modes)
- Number of propagating modes constrained by size and frequency
 - ightarrow CB100: \sim 80 modes allowed ("overmoded system")
- > Rotationally symmetric
 - → arbitrary rotation of vector field (polarisation)
- CB100 is a stack of circular waveguides

Circular waveguide

Circular waveguide

TE solution

Two main quantities (for our case):

- > Propagation constant: $\beta = \sqrt{k^2 rac{p'_{nm}}{2}}$
- > Impedance: $Z_{TE} = \frac{kZ_0}{\beta}$

with $Z_0 = \sqrt{\frac{\mu_0 \mu_r}{\epsilon_0 \epsilon_r}} \simeq Z_{\text{freespace}} \sqrt{\frac{1}{\epsilon_r}}$, and p'_{nm} the roots of the derivatives of the bessel functions (can be looked up).

Transverse TE11 field inside circular waveguide

Advanced 1D simulation

- Consider single circular waveguide mode (TE11)
- > Propagation constant β and impedance Z_{TE} from Maxwells equation
- > Reflection by impedance
- > Can also be solved by eg transfer matrix formalism

Verification of single mode assumption

By reflectivity measurement:

- > Different modes form resonances at different frequencies due to different β
- Resonances show up in reflectivity measurement
- On resonance, other modes are suppressed
- No other resonances in region of interest can be seen
 - ightarrow Single mode approximation valid

Reflectivity of CB100

Boostfactor determination

- "Real" power boostfactor needs to consider coupling to Axion induced field
- Coupling by overlap integral, assuming homogeneous B-field in y-direction, y-polarized E-field and constant Axion field:

TE11 field

Summary

1D boostfactor calculation

- > TE11 only resonant mode at boostfactor
 - → single mode simulation valid
- > Use propagation constant β and impedance Z_{TE11} of circular waveguide
- > Formfactor needed for "real" boostfactor (considering the field shape)

Noise theory

- Noise: random power source with zero average
- > Random phase → no interference

- Noise: random power source with zero average
- > Random phase → no interference
- LNA badly matched
 - → resonance between LNA and mirror
 - → Resonator acts as filter creating coherance

- Noise: random power source with zero average
- > Random phase → no interference
- > LNA badly matched
 - → resonance between LNA and mirror
 - → Resonator acts as filter creating coherance
- Adding a booster, combines several filters
 - → leads to peaks/dips in "main" interference pattern

Noise measurement (2023)

ADS model

Parameter overview

Reflectivity simulation

Geometry

- > Disk spacings (taper to mirror):
 - 13.028 mm
 - 2 12.189 mm
 - 3 12.208 mm
 - 4 8.2745 mm
- > Disk thickness: 0.976 mm

Disk material properties

- $\epsilon_r = 9.36$
- $> \tan \delta = 2 \times 10^{-5}$

Free ("fit") parameters

- \rightarrow Mirror reflectivity: R = 0.99955
- > Baseline attenuation: $A = 0.0058\nu/c_0$ dB

Reflectivity measurement compared to ADS simulation

LNA

LNA noise model

- LNA noise characterized by three parameters:
 - Voltage noise U_n
 - \blacksquare Current noise I_n
 - ullet Their phase correlation $\phi_{
 m corr}$
- "Mirror" (short) can be replaced by open or match
- > Short bypasses *I*_n
- Open bypasses U_n
- Transmission line corresponds to internal length

LNA noise model

LNA deembedding

"The old way"

- Noise at gain point
 → deembed internal length
- Internal length added to move impedance to real number
- $L_{2022} = 30.5 \, \text{mm}, \epsilon_r = 1.4$
- $L_{2023} = 31.95 \, \text{mm}, \epsilon_r = 2.1$
- $> Z_{2022} = 25 \Omega$
- $> Z_{2023} = 29 \Omega$

Deembedded smith charts 2022 (top) and 2023 (bottom)

LNA standards

2022

- Noise parameters matched to standard measurements:
 - $V_{\text{noise}} = 520 \,\text{pV}$
 - $I_{\mathsf{noise}} = 16.5\,\mathsf{pA}$
 - $\phi_{corr} = 180 \deg$

Noise standards 2022

LNA standards

2023

- Noise parameters matched to standard measurements:
 - $V_{\text{noise}} = 700 \, \text{pV}$
 - $I_{\mathsf{noise}} = 21\,\mathsf{pA}$
 - $\phi_{\text{corr}} = 290 \deg$

Noise standards 2023

System noise simulation

Thermal emissions

- > At temperatures > 0 K, everything emits radiation due to thermal vibrations
- > Spectrum defined by black body radiation
- ➤ Emissivity ⇔ absorption (conservation of energy)
- > Black body microwave approximation: $V_n = \sqrt{4kTBZ}$
 - \rightarrow thermal emissions of mirror: $V_{\text{mirror}}/\sqrt{B} = \sqrt{(1-\Gamma)\cdot 4kTZ}$
- Interested in longitudinal transmissions
 - ightarrow emissivity of disks & mirror considered

ADS implementation of mirror with thermal emissions

2022

- Temperature $T=20\,^{\circ}\mathrm{C}$
- Connection LNA \leftrightarrow CB100 $L_{con} = 131.55\,\mathrm{mm}$

System noise 2022

2022

- Temperature $T=20\,^{\circ}\text{C}$
- Connection LNA \leftrightarrow CB100 $L_{con} = 131.55\,\mathrm{mm}$
- Changing ϕ_{corr} to from 180 to 325

System noise 2022

2023

- Temperature $T=20\,^{\circ}\mathrm{C}$
- Connection LNA \leftrightarrow CB100 $L_{con}=134.7\,\mathrm{mm}$

System noise 2023

2023

- Temperature $T=20\,^{\circ}\text{C}$
- Connection LNA \leftrightarrow CB100 $L_{con}=134.7\,\mathrm{mm}$
- Changing ϕ_{corr} to from 290 to 333

System noise 2023

Analysis flow

Optimal case

- Fit booster reflectivity measurement to get mirror reflectivity and baseline attenuation
- Fit LNA standard measurements to get LNA noise parameters
- Sit booster noise measurement to get connection length from LNA to CB100
 - → Model now spits out a boostfactor

Analysis flow

Suboptimal case

- Fit booster reflectivity measurement to get mirror reflectivity and baseline attenuation
- Pit LNA standard measurements to get LNA noise parameters
- Fit booster noise measurement to get connection length from LNA to CB100 as well as adjust LNA noise parameters
 - → Model now spits out a boostfactor

Parameter overview

Complete model parameter overview

Year	R_{mirror}	A [dB]	$Z_{LNA}\left[\Omega\right]$	L_{int} [mm] ($\epsilon_r = 2.1$)	V_n [pV]	I_n [pA]	$\phi_{ m corr}$	L_{con} [mm]	T [°C]
2022 (LNA)	0.99955	$0.0058\nu/c_0$	25	24.9	520	16.5	180	131.55	20
2022 (booster)	0.99955	$0.0058\nu/c_0$	25	24.9	520	16.5	325	131.55	20
2023 (LNA)	0.99955	$0.0058\nu/c_0$	29	31.95	700	21.0	290	134.7	20
2023 (booster)	0.99955	$0.0058\nu/c_0$	29	31.95	700	21.0	333	134.7	20

Boostfactor

Boostfactor 2022

Boostfactor 2023

Uncertainties

> MonteCarlo error study (1000 samples) of β^2

Uncertainties considered

I_{noise} [pA]	V_{noise} [pV]	ϕ_{corr}	L_{con} [mm]	T [°C]
21 ± 1.05	700 ± 35	333 ± 50	134.7 ± 0.5	20 ± 5

 eta^2 uncertainties

Uncertainties 2023

System noise

Noise difference for different L_{con}

$$L_{\mathrm{con}} = (135.7 \pm 0.5) \; \mathrm{mm}$$

Noise difference for different L_{con}

$$L_{\rm con} = (135.7 \pm 0.4)~{\rm mm}$$

Noise difference for different L_{con}

$$L_{\rm con}=(135.7\pm0.3)~\rm mm$$

Noise difference for different L_{con}

$$L_{\rm con} = (135.7 \pm 0.2)~{\rm mm}$$

Noise difference for different L_{con}

$$L_{\rm con}=(135.7\pm0.1)~\rm mm$$

Noise difference for different L_{con}

$$L_{\rm con} = (131.55 \pm 0.5)~{\rm mm}$$

Noise difference for different L_{con}

$$L_{\rm con} = (131.55 \pm 0.4)~{\rm mm}$$

Noise difference for different L_{con}

$$L_{\rm con} = (131.55 \pm 0.3) \; {\rm mm}$$

Noise difference for different L_{con}

$$L_{\mathrm{con}} = (131.55 \pm 0.2) \; \mathrm{mm}$$

Noise difference for different L_{con}

$$L_{\mathrm{con}} = (131.55 \pm 0.1) \; \mathrm{mm}$$

Discussions/TODO

Boostfactor

> Dominant error source: LNA ↔ CB100 connection

How to determine errors?

- Current status
 - Currently, only error on noise parameters and connection length considered
 - Errors estimated from intuition
- The proper way (?)
 - All parameters have uncertainties!
 - Geometry from measurements?
 - LNA parameters from fit?
 - What about Y-factor calibration? (→ our dataset is uncertain)
 - Dicussion: How to propagate them?

Fitting procedure

- Currently, fits are mostly manual
- > Automation with Julia implemented
- Main issue: cost function?
 - → Model doesn't fit all peaks, cut them out?
- > Very slow due to ADS

LNA deembedding

New proposal

> Internal length calculated by phase difference $\Delta \phi$ between ω_1 and ω_2 :

$$L = \frac{c_0 \cdot \Delta \phi^{'}}{2 \cdot (\omega_2 - \omega_1) \sqrt{\epsilon_r}}$$
 $L_{2023} = 30.87 \, \mathrm{mm}$ (before: $L_{2023} = 31.95 \, \mathrm{mm}$)

> Results in complex impedance:

$$\begin{split} &Z_{\text{LNA},2023} = \\ &(39.34 + 19.38i) \pm (1.29 + 1.75i) \; \Omega \\ &Z_{\text{LNA},2022} = \\ &(24.41 + 2.47i) \pm (1.45 + 0.78i) \; \Omega \\ &\rightarrow 2 \, \% \text{ uncertainty on calibration factor} \end{split}$$

LNA S11 phase with linear fit (2023)

Resulting deembedded S11 (2023)

LNA deembedding

New proposal

> Internal length calculated by phase difference $\Delta \phi$ between ω_1 and ω_2 :

$$L = \frac{c_0 \cdot \Delta \phi^{'}}{2 \cdot (\omega_2 - \omega_1) \sqrt{\epsilon_r}}$$
 $L_{2022} = 25.01 \, \mathrm{mm}$ (before: $L_{2022} = 20.33 \, \mathrm{mm}$)

> Results in complex impedance:

$$\begin{split} &Z_{\text{LNA},2023} = \\ &(39.34 + 19.38i) \pm (1.29 + 1.75i) \; \Omega \\ &Z_{\text{LNA},2022} = \\ &(24.41 + 2.47i) \pm (1.45 + 0.78i) \; \Omega \\ &\rightarrow 2 \, \% \text{ uncertainty on calibration factor} \end{split}$$

LNA S11 phase with linear fit (2022)

Resulting deembedded S11 (2022)

LNA deembedding

Discussion

- lacktriangleright Internal length will matter when we have precise L_{con} measurement
 - → might tell us which approach is better
- > LNA transmission: 1Γ ? Or $1 |\Gamma|$? Or just 1?
- > Fit to standards: analytical model?
 - ightarrow easy if there was no internal length
 - Basic idea (short): $T_{LNA}=e^{i\omega n d_{int}}\cdot -1\cdot e^{i\omega n d_{int}}\cdot \Gamma$ $V_{LNA}=\frac{V_n}{1-T_{LNA}}$ $P=|V_{LNA}\cdot \text{S21}|^2/(2\cdot 50)$
 - Mixing of V_n and I_n more complicated

Axion signal

Signal properties:

- $> \Delta \nu = (v_{\text{virial}}/c)^2 \cdot \nu \simeq 10 \, \text{kHz}$
- > $au_c = 1/\Delta
 u \simeq 100\, \mu extsf{s}$

Power detected:

- > Sum of Axion signal and noise: $P \propto |E_n + E_a|^2$
- > Both signals have a random phase offset!

$$\rightarrow P \propto |e_n e^{i\phi_n} + e_a e^{i\phi_a}|^2 = |E_n(1 + \frac{e_a}{e_n} e^{i\delta\phi})|^2$$

>
$$P_{avg} \to \int_0^{2\pi} |E_n(1 + \frac{e_a}{e_n} e^{i\delta\phi})|^2 d(\delta\phi) = 2\pi \left(e_a^2 + e_n^2\right)$$

Simulated Axion signal

Summary ADS

Done

> Full chain from measurement to boostfactor with some manual work

Preliminary results

- > $\beta_{2023,\eta}^2 \simeq 875(200)$
- $> \nu_{\beta,2023} \simeq 18.9725(10) \, \mathrm{GHz}$
- > $\beta_{2022,\eta}^2 \simeq 1225(200)$
- $> \nu_{\beta,2022} \simeq 18.9710(10) \, \text{GHz}$

TODO

- > Automated fits?
- Solve LNA model analytically?
- Uncertainties!
 - Determine uncertainties on all parameters
 - Define error propagation procedure

ADS implementation

Overview

Booster is a one-port device which consists of:

- > Air parts
- > Disk parts
- > Mirror

Booster in ADS

Air

Air consists of:

- Transmission line with impedance and length from waveguide theory
- Attenuator for losses

Losses scale by real element length!

- ightarrow therefore manually scaled and not put into the TLINP, which has a "virtual" length
- Temperature set on attenuator
 - → emissivitiy from losses

Air implementation

Disk

- > Basically the same as Air
- > Additional Axion emissions $V_{ac} = -\sqrt{2Z_{air}P_0}\left(\frac{1}{\epsilon_r} 1\right)$ (peak voltage)

Disk implementation

Mirror

- > Mirror simulated with high ϵ_r on a TLINP
- > ϵ_r from reflectivity
- Emissivitiy from reflectivity
- Manual emissivitiy as losses are not set on TLINP
- > Thermal voltage from Pozar: $V_n/\sqrt{B} = \sqrt{4k_BTZ}$ (Microwave approximation)
- V_n is RMS, but only one side of mirror into booster, do they cancel out?

Mirror implementation

LNA implementation

- Power splitter used for conditionally using either measurement or ideal amp
- TLINP with negative length for deembedding internal length
- No gain on ideal amp, due to calibrated data

LNA implementation

Complete chain

- > ETAPER_MDS to go from $50\,\Omega$ to waveguide impedance
- > Attenuator to fit reflectivity baseline
- > Power probe to determine boostfactor
- Power splitter to look at system without LNA

Booster chain implementation

Usage

Preparation

- Clone gitlab repository
- Download Morpurgo data
- Create directory with "ADS_data" and "ADS_sim" directories inside
- Use "convert_to_ads.ipynb" to fill "ADS_data" directory
- 6 Add "params.dscr" to ADS_data

Usage

ADS setup

- Open ADS project
- Open "setup" schematic
- Change "data_dir" variable to directory containing ADS_data and ADS_sim
- Open "booster_chain" or "Ina_tests' schematic
- Click the simulate button (gears in the toolbar)

Backup

Power calibration

Y-factor

- Use y-factor method to find calibration factor to go from P [W] to T [K]
- > Big difference between receiver chain and SA
- > Freq dependencies:

$$\begin{split} Y(\nu) &= \frac{N_{on}(\nu)}{N_{off}(\nu)} \\ T_e(\nu) &= \frac{T(\nu)_{hot} - Y(\nu) T_{cold}}{Y(\nu) - 1} \frac{1 - \Gamma(\nu)}{1 + \Gamma(\nu)} \\ T_{load,amp}(\nu) &= T_e(\nu) (1 + \Gamma(\nu)) + T_{cold} (1 - \Gamma(\nu)) \\ C(\nu) &= \frac{T_{load,amp}(\nu)}{N_{off}(\nu)} \end{split}$$

- Currently Y & Γ is averaged
- Noise measurements need be smoothed a lot!
- Y is very close to unity (\sim 1.09)

Calibration factor 2023 (50 MHz)

Calibration factor 2022 (50 MHz)

Power calibration

Y-factor

- Use y-factor method to find calibration factor to go from P [W] to T [K]
- > Big difference between receiver chain and SA
- > Freq dependencies:

$$\begin{split} Y(\nu) &= \frac{N_{on}(\nu)}{N_{off}(\nu)} \\ T_e(\nu) &= \frac{T(\nu)_{hot} - Y(\nu) T_{cold}}{Y(\nu) - 1} \frac{1 - \Gamma(\nu)}{1 + \Gamma(\nu)} \\ T_{load,amp}(\nu) &= T_e(\nu) (1 + \Gamma(\nu)) + T_{cold} (1 - \Gamma(\nu)) \\ C(\nu) &= \frac{T_{load,amp}(\nu)}{N_{off}(\nu)} \end{split}$$

- Currently Y & Γ is averaged
- Noise measurements need be smoothed a lot!
- Y is very close to unity (\sim 1.09)

Calibration factor 2023 (2 GHz)

Calibration factor 2022 (2 GHz)

Shortcomings of ADS

- Lacking Documentation
- Slow simulation
- Bad integration
- \rightarrow Alternatives?

scikit-rf

- > Well supported OpenSource python package
- In case of doubt, source available to understand what is happening
- > Experience in fermilab group (esp noise simulation)