FastSim Parametrization of Beam Dump

Oleksandr Borysov, <u>Arka Santra</u>, Noam Tal Hod July 10, 2023, LUXE Software and Analysis Meeting,

Fast simulation strategy

Disable the dump and replace all its "output" by sourcelike particles

At the tracker last layer

 \star 100% of the neutron come from dump

- \star >10% of the photons come from dump
- \star ~1% of the electrons and positrons from the dump
- Look at the dummy volume (sampling plane) located just outside of the surface of the dump

• plot
$$(\frac{dN}{dE} \text{ and } \frac{dN}{dt})$$
 or $\frac{d^2N}{dEdt}$, $\frac{d^2N}{drd\theta_p}$, $\frac{d^2N}{d\phi_p d\phi_{pos}}$,...

- Here r is just $\sqrt{x^2 + y^2}$, position parameter.
- θ_p, ϕ_p is the polar angle and azimuthal angle of the momentum \rightarrow representative of direction of the particle.
- $\phi_{\rm pos}$ is position azimuthal angle, and t is time.

Later: generate from the sampling plane $oldsymbol{O}$ according to these plots

★ Use TH1D::GetRandom() and TH2D::GetRandom2() (for variables that are correlated) methods.

From Noam Tal Hod, WIS

z=4125mm

z=5450.25mm

z=6621.91mm

Plot labels:

- In this talk there will be three types of plots compared:
 - 1. FullSim Distributions from full Geant4 processing of the dump
 - 2. **Fast Sampling**: sampled randomly from the FullSim distribution at the sampling plane.
 - 3. **FastSim** Geant4 processing where dump is replaced by particles following distributions in Fast Sampling above.
 - (i) Plots made at test surfaces.

Mis-modeling of r at test surface 1:

★Last time, we showed some of the comparison plots between FullSim and FastSim.
★Most of the variables match perfectly on test surface 1.
★Comparison plots shown in the previous <u>talk</u>.

★The r (= $\sqrt{x^2 + y^2}$) variable has a mismatch.

Neutron

Photon

Mis-modeling of r at test surface 2:

★Last time, we showed some of the comparison plots between FullSim and FastSim.
★Most of the variables match perfectly on test surface 1.
★Comparison plots shown in the previous <u>talk</u>.

★The r (= $\sqrt{x^2 + y^2}$) variable has a mismatch.

Neutron

Photon

Comparison of FullSim and Fast Sampling distributions at the sampling surface for the LUXE geometry: neutron

FastSampling of θ_p for different scale factors: Neutron

(Only FastSampling plots are changed due to the different scale factor)

2.8

MARCHON!

2.8

Comparison of FullSim and Fast Sampling distributions at the sampling surface for the LUXE geometry: photon

Effect of Smoothening of 2D bins: photon

Smoothened histogram is used for sampling

10

FastSampling of θ_p for scale factors: Photon

Scale factor:

- Neutron and photon need different scale factor.
- Played with many different values and checked the FastSim distributions.
- Settled with scale factor depending only on θ_p :

Neutron scale factor

Photon scale factor

12

Photon at test surface 1 (Looking at the shape of the distribution)

Without scale factor on the sampling plot

Simple scaling may not remove the peaking structure.

The distance of scintillator screen from the beam pipe is ~76 mm.

FastSim gives less photons for r < 60 mm

Photon at test surface 1 (Looking at the shape of the distribution)

The distance of scintillator screen from the beam pipe is ~76 mm.

FastSim gives less photons for r < 60 mm

Photon at test surface 1 (Looking at the shape of the distribution)

astSim gives less otons for r < 60 mm

Photon at test surface 2 (Looking at the shape of the distribution)

Without scale factor on the sampling plot

The distance of tracker inner layer from the beam pipe is ~52 mm.

FastSim gives similar number of photons

Neutron at test surface 1 (Looking at the shape of the distribution)

Without scale factor on the sampling plot

The distance of scintillator screen from the beam pipe is ~76 mm.

FastSim r matches with FullSim after the application of the scale factor

17

Neutron at test surface 2 (Looking at the shape of the distribution)

Without scale factor on the sampling plot

The distance of tracker inner layer from the beam pipe is ~52 mm.

FastSim r matches with FullSim after the application of the scale factor

With scale factor on the sampling plot

Summary and Outlook

Summary and next steps:

- Mis-modeling in very backward particles
 - This is because the FullSim sample is statistically limited in this region.
- Scale very backward θ_p region before sampling
 - Artificial scaling.
 - Smoothening wherever necessary.
- Photons:
 - FastSim sample gives more photons in most of the regions (r>60 mm) at test surface 1.
 - r < 60 mm region may not be interesting for us.
 - FastSim sample gives similar photons at test surface 2.

Neutrons: \bullet

- FastSim sample gives similar number of neutrons as FullSim in test surface 1 and test surface 2.
 - Maybe I will play with the scale factor here a little more.
- Looking into GANs
 - More natural to parameterize the correlations.
 - However this approach will also suffer from low stats in the very-backward scenario.

Thank you!

Photon at test surface 1

Without scale factor on the sampling plot

FastSim gives more photons for r > 60 mm

Photon at test surface 2

Without scale factor on the sampling plot

Neutron at test surface 1

Without scale factor on the sampling plot

FastSim gives similar number of neutron.

Neutron at test surface 2

Without scale factor on the sampling plot

FastSim gives similar number of neutron.

Strategy for FastSim in LUXE Geometry

• The symmetry in r and ϕ_{pos} is unavailable for the dump particles in LUXE geometry, we need to come up with this strategy:

1.Plot $\frac{d^2N}{dxdy}$ \rightarrow randomly draw x and y from this distribution.

2. This gives r and ϕ_{pos} ;

(i)depending on $x > x_0$ or $x < x_0$, we select r_{Up} or r_{Dn} .

3.Plot $\frac{d^2N}{dr_{Up}d\theta_p}$ and $\frac{d^2N}{dr_{Dn}d\theta_p} \rightarrow$ given the r, we project thi

4.Plot $\frac{d^2N}{d\phi_p d\phi_{pos}}$ \rightarrow given the ϕ_{pos} , we project this distribution

5.Randomly draw θ_p from $\frac{dN}{d\theta_p}$ and ϕ_p from $\frac{dN}{d\phi_p}$

6. We have x, y, ϕ_{pos} , $heta_p$ and ϕ_p

 d^2N 7. Energy and time can be randomly drawn from $\frac{d}{dEdt}$ (for $\frac{d}{dEdt}$

is distribution on
$$\theta_p$$
 to get $\frac{dN}{d\theta_p}$ (1D distribution)
ution on ϕ_p to get $\frac{dN}{d\phi_p}$ (1D distribution)

For neutron) or
$$\left(\frac{dN}{dE} \text{ and } \frac{dN}{dt}\right)$$
 (for photons).

Effect of Smoothening of 2D bins: photon

Smooth bins are used for sampling.

Baseline distribution plots for LUXE geometry at the sampling surface (z=6621.91mm)

 \star Plots used for sampling.

Baseline distributions from FullSim in LUXE: neutron at sampling surface

dump_plane_bkg_track_phi_pos_phi_neutron_cut

dump_plane_bkg_track_rDn_track_theta_neutron_cut

 \bigstar For E vs t plot of neutron, we only go up to 100 eV of neutron.

 \bigstar Neutron less energetic than that are not interesting.

Baseline distributions from FullSim in LUXE: photon at sampling surface

Comparison of FullSim and Fast Sampling distributions at the sampling surface for the LUXE geometry: neutron

- ★Comparison of distribution at sampling surface for neutrons
 - ★Agreement is very good within the statistics except momentum direction at very backward direction.
 ★Need to see its
 - effect in the test surfaces.
 - ★The good modeling between FullSim and Fast Sampling is a sanity check.

Comparison of FullSim and Fast Sampling distributions at the sampling surface for the LUXE geometry: photon

- ★Comparison of distribution at sampling surface for photons
 - ★Agreement is very good within the statistics except momentum direction at very backward direction.
 ★Need to see its
 - effect in the test surfaces.
 - ★The good modeling between FullSim and Fast Sampling is a sanity check.

A few 1D distributions between FastSim and FullSim: neutron at the test surface 1

 \smile .

 \bigstar Distributions are looked at **z=5450.25mm**. \star FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$

A few 1D distributions between FastSim and FullSim: neutron at the test surface 1

 \bigstar Distributions are looked at **z=5450.25mm**.

 \star FullSim and FastSim has comparable statistics.

★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles

 $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$

 \star Problem may be because we have very few forward particles in FullSim to sample the distribution from.

 \bigstar We can modify the θ_p (direction of the particles) such that this problem is resolved.

A few 1D distributions between FastSim and FullSim: photon at the test surface 1

★Distributions are looked at z=5450.25mm.
★FullSim and FastSim has comparable statistics.
★FullSim and FastSim distributions are comparable.

- ★Mis-modeling in very backward particles
- $(r \leq 100 \text{ mm at } z=5450.25 \text{ mm}).$
- ★Problem may be because we have very few forward particles in FullSim to sample the distribution from.
- ★We can modify the θ_p (direction of the particles) such that this problem is resolved.

A few 1D distributions between FastSim and FullSim: neutron at the test surface 2

 \smile

 \bigstar Distributions are looked at **z=4125mm**.

 \star FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles $(r \leq 200 \text{ mm at z=4125mm}).$

A few 1D distributions between FastSim and FullSim: neutron at the test surface 2

 \bigstar Distributions are looked at **z=4125mm**.

 \star FullSim and FastSim has comparable statistics. ★FullSim and FastSim distributions are matching quite well.

★Mis-modeling in very backward particles $(r \leq 200 \text{ mm at z=4125mm}).$

A few 1D distributions between FastSim and FullSim: photon at the test surface 2

★Distributions are looked at z=4125mm.
★FullSim and FastSim has comparable statistics.
★FullSim and FastSim distributions are comparable.

★Mis-modeling in very backward particles $(r \leq 400 \text{ mm at } z=4125 \text{ mm}).$

A few 1D distributions between FastSim and FullSim: photon at the test surface 2

★Distributions are looked at z=4125mm.
★FullSim and FastSim has comparable statistics.
★FullSim and FastSim distributions are comparable.

★Mis-modeling in very backward particles $(r \leq 400 \text{ mm at } z=4125 \text{ mm}).$