

EDM4hep & DD4hep for LUXE

Some first steps

This project has received funding from the European Union's Horizon 2020 Research and Innovation programme under grant agreement No 101004761.

Thomas Madlener with a lot of help from Sasha

LUXE SAS meeting

July 10, 2023

The EDM at the core of HEP software

- Different components of experiment software have to talk to each other
- The event data model defines the language for this communication
- Users express their ideas in the same language

EDM4hep - The common EDM for Key4hep

key4hep/EDM4hep

edm4hep.web.cern.ch

AIDASoft/podio

- Based on experience from LC and FCC
 - Focus on usability in analysis
- Works well for current Future Collider studies
- Quite stable over the last two years
- Generated via podio
- Can be extended for LUXE specific use cases

The podio EDM toolkit

- Implementing a performant event data model (EDM) is non-trivial
- Use podio to generate code starting from a high level description
- Provide an easy to use interface to the users
- Main customers
 - 💭 key4hep/EDM4hep
 - 🖸 eic/EDM4eic
- \cdot Finishing schema evolution for v1.0

podio supports different I/O backends

- Default **ROOT** backend
 - POD buffers are stored as branches in a TTree
 - Files can be interpreted without EDM library(!)
 - Can be used in RDataFrame or with uproot
- Alternative SIO backend
 - Persistency library used in LCIO
 - Complete events are stored as binary records
- Adding more I/O backends is possible

DD4hep - Detector description

- Complete detector description
 - Geometry, materials, visualization, readout, alignment, calibration, ...
- From a single source of information
 - Simulation, reconstruction, analysis
- Comes with a powerful plug-in mechanism that allows customization
- More or less "industry standard" now
 ILC, CLIC, FCC, CEPC, EIC, LHCb, CMS, ...
- ddsim standalone simulation executable

dd4hep.web.cern.ch

lxsim vs ddsim/DD4hep (at a very high level)

	lxsim	ddsim
detector description	C++	XML & C++ (detector constructors)
executable	compiled C++	python script (ddsim)
simulation config	.mac files	python (+ command line)
output	custom ROOT & HDF5 format	EDM4hep,

- Conceptually and (simulation) functionality wise quite similar
- Major differences:
 - ddsim (DD4hep) detector also encodes sensitive detectors (and their readouts) in geometry (XML)
 - lxsim can dump to GDML (only volumes, no info on sensitive detectors)
- DD4hep geometry can directly be used in reconstruction & analysis

Using GDML geometry with DD4hep

- ← Almost complete
 DD4hep XML
 - Read GDML geometry
 - \cdot (from lxsim)
 - Need to add sensitive detectors based on heuristics
 - E.g. material, name, ...
 - Magnetic field also needs to be added in XML

First steps and early results

- Particle gun at IP (0,0,0), direction along beam axis, uniform energy range
- Silicon tracker only
- This is more or less a technical demonstration
 - Verify that loading GDML and using a plugin to place sensitive detectors works
 - Establish the potential of a migration in steps
 - Produce some first outputs in EDM4hep format

Next steps

Immediate

- More detailed analysis of first steps
 - Tracker hit position and energy correlations
- Make the calorimeter sensitive and repeat exercise for calorimeter hits

Workshop (goal)

- Implement "proper" tracker geometry and use that with rest in GDML
- Load tracker geometry from DD4hep to ACTS and reconstruct some tracks

Midterm

- Implement more detectors in DD4hep and replace GDML parts "one-by-one"
- Define datatypes to store hits from all detectors (new ones of necessary)

- Need a well defined EDM to facilitate reconstruction & analysis workflows
- $\cdot\,$ Use EDM4hep where possible, extend as needed for LUXE
- Started to explore migration path to DD4hep
- Very first results based on GDML geometry dumped from lxsim
- $\cdot\,$ The "real" work is yet to start and will take quite some time
 - $\cdot\,$ Need to prioritize what to do first