TB 2022: Geant4 simulations & Data Comparison

Veta Ghenescu, Alina Neagu, Mihai Potlog Institute of Space Science, Bucharest

TB 2022 Simulations Step by Step

geometry

- complete implementation of all type of sensors Anton1, Yan1, BeamCal, C72, C74, C75
- re-numbered the pads to correspond to channels from real sensors
- macro with commands for easily geometry change

physics list

- check results with another physics list suggested by Geant4 QGSP_BERT,
 QGSP_BIC and those with electromagnetic options (_EMV, _EMX, EMZ..)
- start / stop hadronic processes to investigate their influence on results
- implement specific physics list one developed by Alina a few years ago for FCal

analysis

- evaluate each pad energy deposition
- fit the energy deposition histograms to get the MPV
- evaluate MPV for different setup configurations
- compare simulation results with data from test beam
- find the longitudinal shower distribution for different configurations (e.g. 1 to 15 W plates in front of sensor)

Simulations: Number of e-h pairs created

Olga Novgorodova's Thesis:

- Energy deposition in GaAs sensor
- 500 μm thickness
- 9°Sr, and 2, 4 & 4.5 GeV mono-energetic e-
- Triggered by 2 / 3 scintillators

Setup	Dep. En. (MeV)	e-h pairs / μm	Dep. En. (MeV)	e-h pairs / μm
⁹⁰ Sr	0.3512	163.4	0.3555	165.34
2 GeV	0.3455	160.7	0.3546	164.93
4 GeV	0.3513	163.4	0.3558	165.48
4.5 GeV	0.3526	164.0	0.3544	164.84

Why differences?

- which are the characteristics of triggers: dimensions, positions, etc.
- landau fit parameters

- Thickness: 550 µm
- $E_{e} = 5 \text{ GeV}$
- $E_{i} = 4.3 \text{ eV}$

0.3908 MeV Dep. en. pairs / μm 165.12 e-h

Physics list used: FTFP_BERT_EMZ

Simulations: Hit map

Simulation setup

- Primary particle: electron
- Primary particle energy: 5GeV
- Source type:
 - squared,
 - 12 mm x 12 mm
- Number of simulated events: 1 000 000

Hits registered position

- Centered on pads 64, 65, 74, 75, 84, 85
- Converted to channel number from sensor

2022 TestBeam: MeV to ADC

- Channel by channel gain calibration can be done by looking on the response of sensor directly exposed on MIPs deposition in Si sensor
- for each pad a (Landau & Gauss) function was fitted to energy spectrum

Analysis conditions

Data from run4484 – Anton1 sensor

- Beam on pads 42, 44, 62, 64
- Converted to channel number from sensor
- Kept all timeplanes
- Cut on amplitude < 900
- dead channels masked
- langaus fitted in range [12-64] ADC

2022 TestBeam: MeV to ADC

2022 TestBeam: MeV to ADC

- 2 cases investigated: [run 4484] & [run 4459 run 4491]
- fit with (Landau & Gauss) function all channels in [12-64] ADC range

Data from run4484

- Beam on pads 42, 44, 62, 64
- MPV = 20.26 ± 0.68 [ADC]

Data from merged runs

• MPV = 21.34 ± 0.42 [ADC]

TB 2022: Simulations

Simulation setup

- e with 5GeV
- centered on pads 64, 65, 74, 75, 84, 85

from data, run4484

• 1 MIP = 20.26 ± 0.68 [ADC]

from simulations

• 1 MIP = 0.3569 ± 0.12 MeV

TB 2022: Simulations vs Data

goal: compare simulations with data

• 1 MeV = 56.77 ADC

Si sensor

Simulations: Number of e-h pairs created

- Energy deposition in Si sensor
 - 320 μm thickness
 - 5 GeV mono-energetic e-
 - triggered by 3 scintillators

- Energy deposition in Si sensor
 - 500 μm thickness
 - 3 GeV mono-energetic e-
 - triggered by 3 scintillators

- Thickness: 320 μm
- E_{e-} = 5 GeV
- $E_i = 3.62 \text{ eV}$

78.45 e-h pairs per µm

- Thickness: 500 μm
- E_e = 3 GeV
- E_i = 3.62 eV

80.88 e-h pairs per µm

Physics list used: QGSP_BERT_EMZ

Si sensor – C75

2022 TestBeam: MeV to ADC

Data from run4436 - C75 sensor

Beam on pads 49, 51, 59, 61

Analysis conditions

- Kept all timeplanes
- Cut on amplitude < 900
- · dead channels masked
- langaus fitted in range [12-64] ADC

- a lot of channels are dead or unresponsive
- for each pad a (Landau & Gauss) function was fitted to energy spectrum
- The analysis showed very small deviations from channel to channel

Si sensor – C75

2022 TestBeam: MeV to ADC

2022 TestBeam: MeV to ADC

ADC

■ Si sensor – C74

TB 2022: Simulations vs Data

Data from run4545

Integrated Hit Map

Hitmap of the merged file of C74 sensor - file from run4538 to run4551

Energy deposition for sensor with 1W

• 1 MeV = 228.79 ADC

Geant4: FTFP_BERT_EMZ

ADC

case scenario: Si sensor with W in front

1 MeV = 228.79 ADC

run4749 - 1W

run4748 - 2W

run4747 - 3W

■ Si sensor – C74 & W

TB 2022: Simulations vs Data

■ Si sensor – C74 & W

TB 2022: Simulations vs Data

ADC

ADC

TB 2022: Geant4 vs Data

TB 2022 Simulations - update

- Energy deposition on (W + C74 sensor)
- placed all tungsten plates in the same position as in test-beam taking into account that the plates where removed one by one starting with the one placed further of the sensor - no noticeable influence!
- checked the composition of each tungsten plate and implemented in Geant4 simulations – no noticeable influence!
- modified the beam profile using a Gaussian shape of the energy distribution for the incoming electrons - no noticeable influence!
- modify the physics list to include / exclude some process work in progress.

Stack configuration ∨ beam ∨							
Slot 2	Plane "3"	tungsten	3,520	abs95			
Slot 3	A5	tungsten	3,528	abs95			
Slot 4	A2	tungsten	3,550	abs95			
Slot 5	Plane "4"	tungsten	3,475	abs95			
Slot 6	B12	tungsten	3,550	abs95			
Slot 7	A8	tungsten	3,558	abs95			
Slot 8	B23	tungsten	3,543	abs95			
Slot 9	B21	tungsten					
Slot 10	1 (A3)	tungsten					
Slot 11	B19	tungsten					
Slot 12	B14	tungsten					
Slot 13	7 (MGS2)	tungsten	3,521	abs93			
Slot 14	10 (MGS5)	tungsten	3,645	abs93			
Slot 15	11 (MGS6)	tungsten	3,470	abs93			
Slot 16		gap	1777				
Slot 17	Calice 74	sensor	1				
Slots 18end		empty					

```
/gps/particle e-
/gps/pos/type Beam
/gps/pos/shape Rectangle
/gps/pos/halfx 0.6 cm
/gps/pos/halfy 0.6 cm
/gps/pos/centre 0. 0. -200. cm
/gps/direction 0 0 1
/gps/ene/type Gauss
/gps/ene/mono 5000 MeV
/gps/ene/sigma 50. MeV
/run/beamOn 5000000
```

TB 2022: Configurations

• Geometry implementation in Geant4 - 10 experimental setups - 38 different configurations

- Ga-As sensor Anton1
 - 1 exp. setups without any W plates
 - Energies: 5 GeV c
- Ga-As sensor Yan1
 - 1 exp. setup without W plates
 - Energies: 5 GeV
 - 1 exp. setup with 5 W plates
 - Energies: 1 GeV, 3 GeV, 5 GeV
 - 1 exp. setups with decreased no of plates 15 -> 1 W
 - **Energies: 5 GeV**
- Ga-As sensor BeamCal
 - 1 exp. setups without any W plates
 - **Energies: 5 GeV**

- Si sensor C72
 - 1 exp. setups without any W plates
 - **Energies: 5 GeV**
- Si sensor C74
 - 1 exp. setups without any W plates
 - **Energies: 5 GeV**
 - 1 exp. setup with 5 W plates
 - Energies: 1 GeV, 3 GeV, 5 GeV
 - 1 exp. setups with decreased no of plates 15 -> 1 W
 - **Energies: 5 GeV**
- Si sensor C72
 - 1 exp. setups without any W plates
 - **Energies: 5 GeV**