Quantum field theory and the nature of space-time

Graeme Segal

8 November, 2023

nevertheless we believe spacetime EMERGES from a more fundamental quantum description of the world.

nevertheless we believe spacetime EMERGES from a more fundamental quantum description of the world.

Quantum system \leftrightarrow algebra A of operators in Hilbert space

nevertheless we believe spacetime EMERGES from a more fundamental quantum description of the world.

Quantum system \leftrightarrow algebra A of operators in Hilbert space

A quantum field theory is a way of "organizing" — or "spreading out" — the algebra $\mathcal A$ in spacetime.

Very roughly, this means giving vector subpaces \mathcal{O}_x of A, indexed by the points of spacetime, which generate A multiplicatively.

nevertheless we believe spacetime EMERGES from a more fundamental quantum description of the world.

Quantum system \leftrightarrow algebra A of operators in Hilbert space

A quantum field theory is a way of "organizing" — or "spreading out" — the algebra $\mathcal A$ in spacetime.

Very roughly, this means giving vector subpaces \mathcal{O}_x of A, indexed by the points of spacetime, which generate A multiplicatively.

The early attempts to make this precise took space-time as *given*, and a QFT gave no information about space-time.

The Wightman axioms are formulated only for standard Minkowski space M.

Organizing principle: $\mathcal A$ is generated by an operator-valued distribution $x \mapsto \psi(x)$ on M.

All other properties

— domains of definition, local commutativity, positivity of energy, unitarity —

are put in by hand.

Positivity of energy is ensured by a version of Wick rotation:

the distributions

$$
(x_1,\ldots,x_k)\ \mapsto\ \psi(x_1)\ldots\psi(x_k)
$$

are boundary-values of **holomorphic** operator-valued functions defined in an open subset $\mathcal{U}_k\subset (\mathbb{M}_\mathbb{C})^k.$

 \mathcal{U}_k contains the configuration-space $C_k(\mathbb{E})$ of the Euclidean subspace $\mathbb E$ of $\mathbb M_{\mathbb C}$, so we do have actual operators parametrized by $C_k(\mathbb{E}).$

But a quantum system may reveal spontaneously how it should be spread out in space-time

Example

Kac-Moody algebra \mathcal{A} — defined combinatorially

 $\mathsf{Out}(\mathcal{A})\quad = \quad \mathsf{Diff}(\mathcal{S}^1) \quad \neq \quad \mathsf{Homeo}(\mathcal{S}^1)$

 \rightarrow loop groups and positive energy representations

But a quantum system may reveal spontaneously how it should be spread out in space-time

Example

Kac-Moody algebra \mathcal{A} — defined combinatorially

 $\mathsf{Out}(\mathcal{A})\quad = \quad \mathsf{Diff}(\mathcal{S}^1) \quad \neq \quad \mathsf{Homeo}(\mathcal{S}^1)$

 \rightarrow loop groups and positive energy representations

modularity of characters \leftrightarrow character associated to torus

9

The path-integral picture of QFT — in which a theory is defined by a Lagrangian — encouraged the idea that a theory is a "thick" description of space-time and its attached structures.

The path-integral picture of QFT — in which a theory is defined by a Lagrangian — encouraged the idea that a theory is a "thick" description of space-time and its attached structures.

Nevertheless, small differences in the definition of QFT correspond to quite different concepts of space — cf. the compactified and uncompactified dimensions in string theory.

9

The path-integral picture of QFT — in which a theory is defined by a Lagrangian — encouraged the idea that a theory is a "thick" description of space-time and its attached structures.

Nevertheless, small differences in the definition of QFT correspond to quite different concepts of space — cf. the compactified and uncompactified dimensions in string theory.

The cobordism functor definition attempts to model the path-integral idea. (See arXiv:2105.10161 for details.)

Closed $(d-1)$ -manifold $\Sigma \mapsto$ topological vector space \mathcal{H}_{Σ}

Space-time manifold M bounded in the past and the future by hypersurfaces Σ_0 and Σ_1

 \mapsto trace-class linear map $U_M: \mathcal{H}_{\Sigma_0} \to \mathcal{H}_{\Sigma_1}$

The manifolds M and hypersurfaces Σ have allowable complex metrics given by symmetric tensors g_{ii} with complex components. These metrics form a contractible domain, with the Lorentzian metrics on its boundary.

Axioms:

- (a) U_M depends holomorphically on the metric of M.
- (b) The functor takes disjoint unions to tensor products.
- (c) ∗-property.

There is no explicit mention of field operators or commutation rules, but they emerge.

There is **no** explicit mention of field operators or commutation rules, but they emerge.

For any $x \in M$ we define \mathcal{O}_x as the set of compatible families $\psi_x = \{\psi_U \in \mathcal{H}_{\partial U}\}\$ for all neighbourhoods $x \in U \subset M$.

Thus ψ_x is an operator $\psi_{\mathsf{x}}: \mathcal{H}_{\mathsf{\Sigma}_0} \to \mathcal{H}_{\mathsf{\Sigma}_1}.$

Much of the usual structure of QFT appears automatically.

Positivity of energy and unitarity come from the use of complex metrics, using the

Theorem If the metric of M tends to a Lorentzian metric (on the boundary of the domain of allowable metrics) which is globally hyperbolic, then U_M tends to a unitary operator.

Cf. The unitary group U_n lies on the boundary of its holomorphic hull, the contraction operators in \mathbb{C}^n .

Some essential features of the path-integral picture are **not** captured by the cobordism formulation.

We cannot deduce that

- a deformation of the theory is defined by a local field
- the energy-momentum tensor is an element of \mathcal{O}_{x} .

Two other seemingly very different questions:

• In flat Minkowski space, are the field operators distributions?

Two other seemingly very different questions:

- In flat Minkowski space, are the field operators *distributions*?
- Can we construct an 'extended' theory? We would like to have:
- a linear tensor category C_Z for each closed $(d 2)$ -manifold Z

with an object \mathcal{H}_{Σ} for each Σ^{d-1} with boundary Z, such that

if $\hat{\Sigma}$ is the closed manifold $\bar{\Sigma}_1 \sqcup_{Z} \Sigma_2$ then

 $\mathcal{H}_{\hat{\Sigma}} = \text{Hom}_{\mathcal{C}_Z}(\mathcal{H}_{\Sigma_1}; \mathcal{H}_{\Sigma_2}).$ $= \; \mathcal{H}_{\mathsf{\bar{\Sigma}}_1} \otimes_{\mathcal{C}_Z} \mathcal{H}_{\mathsf{\Sigma}_2}.$

I conjecture that all four of these statements follow from the assumption of asymptotic conformality at short distances.

I conjecture that all four of these statements follow from the assumption of asymptotic conformality at short distances.

This requires the spaces $\mathcal{H}_{\partial U}$ associated to the neighbourhoods U of a point $x \in M$ to stabilize as U shrinks to the point x.

It allows us to introduce the concept of the scaling dimension of a field operator, i.e. an increasing filtration

$$
\mathcal{O}_x^{(0)} \ \subset \ \mathcal{O}_x^{(1)} \ \subset \ \ldots \ \subset \ \mathcal{O}_x,
$$

and to set up the usual structure of operator product expansions in terms of it.

Let \mathcal{A}_{Σ_1} denote the algebra of operators on $\mathcal{H}_{\Sigma_1\cup\Sigma_2}$ generated by the elements of \mathcal{O}_{x} with $\mathsf{x} \in \mathsf{\Sigma}_1$, and let $\mathcal{A}_{\mathsf{\Sigma}_1}^o$ denote its commuting algebra.

