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Quantum system < algebra A of operators in Hilbert space

A quantum field theory is a way of “organizing” — or “spreading
out” — the algebra A in spacetime.

Very roughly, this means giving vector subpaces Oy of A, indexed
by the points of spacetime, which generate A multiplicatively.

The early attempts to make this precise took space-time as given,
and a QFT gave no information about space-time.



The Wightman axioms are formulated only for standard
Minkowski space M.

Organizing principle: A is generated by an operator-valued
distribution x — 1(x) on M.

All other properties
— domains of definition, local commutativity, positivity of
energy, unitarity —
are put in by hand.



Positivity of energy is ensured by a version of Wick rotation:
the distributions

(Xl, Ce 7Xk) — Q/J(Xl) .. .¢(Xk)

are boundary-values of holomorphic operator-valued functions
defined in an open subset Uy C (Mc)X.

U contains the configuration-space Cyx(E) of the Euclidean
subspace E of M, so we do have actual operators parametrized by
Ck(E).
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But a quantum system may reveal spontaneously how it should be
spread out in space-time

Example
Kac-Moody algebra A —  defined combinatorially
Out(A) = Diff(S!) # Homeo(S?)

— loop groups and positive energy representations
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But a quantum system may reveal spontaneously how it should be
spread out in space-time

Example
Kac-Moody algebra A —  defined combinatorially
Out(A) = Diff(S!) # Homeo(S?)

— loop groups and positive energy representations

modularity of characters <>  character associated to torus
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The path-integral picture of QFT — in which a theory is defined
by a Lagrangian — encouraged the idea that a theory is a "“thick”
description of space-time and its attached structures.

Nevertheless, small differences in the definition of QFT correspond
to quite different concepts of space — cf. the compactified and
uncompactified dimensions in string theory.

The cobordism functor definition attempts to model the
path-integral idea.  (See arXiv:2105.10161 for details.)
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Closed (d — 1)-manifold ¥ +— topological vector space Hyx

Space-time manifold M bounded in the past and the future by
hypersurfaces ¥y and X3

—  trace-class linear map Uy : Hy, — Hyx,
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The manifolds M and hypersurfaces & have allowable complex
metrics given by symmetric tensors gj; with complex components.
These metrics form a contractible domain, with the Lorentzian
metrics on its boundary.

Axioms:
(a) Up depends holomorphically on the metric of M.
(b) The functor takes disjoint unions to tensor products.

(c) *-property.



There is no explicit mention of field operators or commutation
rules, but they emerge.
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There is no explicit mention of field operators or commutation
rules, but they emerge.

For any x € M we define Oy as the set of compatible families
¥y = {Yuy € Hoy} for all neighbourhoods x € U C M.

Thus 1 is an operator ¥ : Hy, — Hy,.

Z, u U » 2,
’3(—29 %Teu — %&‘
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Much of the usual structure of QFT appears automatically.

Positivity of energy and unitarity come from the use of complex
metrics, using the

Theorem If the metric of M tends to a Lorentzian metric (on the
boundary of the domain of allowable metrics) which is globally
hyperbolic, then Uy tends to a unitary operator.

Cf.  The unitary group U, lies on the boundary of its holomorphic
hull, the contraction operators in C".



Some essential features of the path-integral picture are not
captured by the cobordism formulation.

We cannot deduce that
e a deformation of the theory is defined by a local field

e the energy-momentum tensor is an element of O.
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Two other seemingly very different questions:

e In flat Minkowski space, are the field operators distributions?
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Two other seemingly very different questions:

e In flat Minkowski space, are the field operators distributions?

e Can we construct an ‘extended’ theory? We would like to
have:

a linear tensor category Cz for each closed (d — 2)-manifold Z

with an object Hy for each ¥9~! with boundary Z,
such that

if 3 is the closed manifold Y1 Uz ¥, then
Hi = Homg, (Hxy: Hs,)-

= 'H;:l ®c, Hy,-



| conjecture that all four of these statements follow from the
assumption of asymptotic conformality at short distances.
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| conjecture that all four of these statements follow from the
assumption of asymptotic conformality at short distances.

This requires the spaces Hyy associated to the neighbourhoods U
of a point x € M to stabilize as U shrinks to the point x.

It allows us to introduce the concept of the scaling dimension
of a field operator, i.e. an increasing filtration

Oﬁo) C (99) C ... C Oy,

and to set up the usual structure of operator product expansions in
terms of it.
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Let Ay, denote the algebra of operators on Hy, s, generated by
the elements of O, with x € X1, and let A%1 denote its
commuting algebra.

Towita — Tokesaki thaony
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