Quantum field theory and the nature of space-time

Graeme Segal

8 November, 2023

nevertheless we believe spacetime EMERGES from a more fundamental *quantum description* of the world.

nevertheless we believe spacetime EMERGES from a more fundamental *quantum description* of the world.

 $\mathsf{Quantum\ system} \quad \leftrightarrow \quad \mathsf{algebra}\ \mathcal{A} \ \mathsf{of\ operators\ in\ Hilbert\ space}$

nevertheless we believe spacetime EMERGES from a more fundamental *quantum description* of the world.

 $\mathsf{Quantum\ system} \quad \leftrightarrow \quad \mathsf{algebra}\ \mathcal{A} \ \mathsf{of\ operators\ in\ Hilbert\ space}$

A quantum field theory is a way of "organizing" — or "spreading out" — the algebra A in spacetime.

Very roughly, this means giving vector subpaces \mathcal{O}_x of A, indexed by the points of spacetime, which generate \mathcal{A} multiplicatively.

nevertheless we believe spacetime EMERGES from a more fundamental *quantum description* of the world.

 $\mathsf{Quantum\ system} \quad \leftrightarrow \quad \mathsf{algebra}\ \mathcal{A} \ \mathsf{of\ operators\ in\ Hilbert\ space}$

A quantum field theory is a way of "organizing" — or "spreading out" — the algebra A in spacetime.

Very roughly, this means giving vector subpaces \mathcal{O}_x of A, indexed by the points of spacetime, which generate \mathcal{A} multiplicatively.

The early attempts to make this precise took space-time as *given*, and a QFT gave no information about space-time.

The **Wightman axioms** are formulated only for standard Minkowski space \mathbb{M} .

Organizing principle: \mathcal{A} is generated by an *operator-valued* distribution $x \mapsto \psi(x)$ on \mathbb{M} .

All other properties

domains of definition, local commutativity, positivity of energy, unitarity

are put in by hand.

Positivity of energy is ensured by a version of Wick rotation:

the distributions

$$(x_1,\ldots,x_k) \mapsto \psi(x_1)\ldots\psi(x_k)$$

are boundary-values of **holomorphic** operator-valued **functions** defined in an open subset $\mathcal{U}_k \subset (\mathbb{M}_{\mathbb{C}})^k$.

 \mathcal{U}_k contains the configuration-space $C_k(\mathbb{E})$ of the Euclidean subspace \mathbb{E} of $\mathbb{M}_{\mathbb{C}}$, so we do have actual operators parametrized by $C_k(\mathbb{E})$. But a quantum system may reveal spontaneously how it should be spread out in space-time

Example

Kac-Moody algebra \mathcal{A} — defined combinatorially

 $\operatorname{Out}(\mathcal{A}) = \operatorname{Diff}(S^1) \neq \operatorname{Homeo}(S^1)$

 \rightarrow ~ loop groups and positive energy representations

But a quantum system may reveal spontaneously how it should be spread out in space-time

Example

Kac-Moody algebra \mathcal{A} — defined combinatorially

 $\operatorname{Out}(\mathcal{A}) = \operatorname{Diff}(S^1) \neq \operatorname{Homeo}(S^1)$

 \rightarrow $\$ loop groups and positive energy representations

modularity of characters \leftrightarrow character associated to *torus*

9

The path-integral picture of QFT — in which a theory is defined by a Lagrangian — encouraged the idea that a theory is a "thick" description of space-time and its attached structures. The path-integral picture of QFT — in which a theory is defined by a Lagrangian — encouraged the idea that a theory is a "thick" description of space-time and its attached structures.

Nevertheless, small differences in the definition of QFT correspond to quite different concepts of space — cf. the compactified and uncompactified dimensions in string theory.

9

The path-integral picture of QFT — in which a theory is defined by a Lagrangian — encouraged the idea that a theory is a "thick" description of space-time and its attached structures.

Nevertheless, small differences in the definition of QFT correspond to quite different concepts of space — cf. the compactified and uncompactified dimensions in string theory.

The **cobordism functor** definition attempts to model the path-integral idea. (See arXiv:2105.10161 for details.)

Closed (d-1)-manifold $\Sigma \mapsto$ topological vector space \mathcal{H}_{Σ}

Space-time manifold M bounded in the past and the future by hypersurfaces Σ_0 and Σ_1

 $\mapsto \quad \textit{trace-class linear map } U_M: \ \mathcal{H}_{\Sigma_0} \ \rightarrow \mathcal{H}_{\Sigma_1}$

The manifolds M and hypersurfaces Σ have allowable complex metrics given by symmetric tensors g_{ij} with complex components. These metrics form a contractible domain, with the Lorentzian metrics on its boundary.

Axioms:

- (a) U_M depends holomorphically on the metric of M.
- (b) The functor takes disjoint unions to tensor products.
- (c) *-property.

There is **no** explicit mention of field operators or commutation rules, but they **emerge**.

There is **no** explicit mention of field operators or commutation rules, but they **emerge**.

For any $x \in M$ we define \mathcal{O}_x as the set of compatible families $\psi_x = \{\psi_U \in \mathcal{H}_{\partial U}\}$ for all neighbourhoods $x \in U \subset M$.

Thus ψ_x is an operator $\psi_x : \mathcal{H}_{\Sigma_0} \to \mathcal{H}_{\Sigma_1}$.

Much of the usual structure of QFT appears automatically.

Positivity of energy and unitarity come from the use of complex metrics, using the

Theorem If the metric of M tends to a Lorentzian metric (on the boundary of the domain of allowable metrics) which is globally hyperbolic, then U_M tends to a unitary operator.

Cf. The unitary group U_n lies on the boundary of its holomorphic hull, the contraction operators in \mathbb{C}^n .

Some essential features of the path-integral picture are **not** captured by the cobordism formulation.

We cannot deduce that

- a deformation of the theory is defined by a local field
- the energy-momentum tensor is an element of \mathcal{O}_{x} .

Two other seemingly very different questions:

• In flat Minkowski space, are the field operators distributions?

Two other seemingly very different questions:

- In flat Minkowski space, are the field operators distributions?
- Can we construct an **'extended'** theory? We would like to have:
- a linear tensor category \mathcal{C}_Z for each closed (d-2)-manifold Z

with an object \mathcal{H}_{Σ} for each Σ^{d-1} with boundary Z, such that

if $\hat{\Sigma}$ is the closed manifold $\bar{\Sigma}_1 \sqcup_Z \Sigma_2$ then

$$\begin{aligned} \mathcal{H}_{\widehat{\Sigma}} &= \operatorname{Hom}_{\mathcal{C}_{Z}}(\mathcal{H}_{\Sigma_{1}};\mathcal{H}_{\Sigma_{2}}). \\ &= \mathcal{H}_{\overline{\Sigma}_{1}} \otimes_{\mathcal{C}_{Z}} \mathcal{H}_{\Sigma_{2}}. \end{aligned}$$

I conjecture that all four of these statements follow from the assumption of **asymptotic conformality** at short distances.

I conjecture that all four of these statements follow from the assumption of **asymptotic conformality** at short distances.

This requires the spaces $\mathcal{H}_{\partial U}$ associated to the neighbourhoods U of a point $x \in M$ to *stabilize* as U shrinks to the point x.

It allows us to introduce the concept of the **scaling dimension** of a field operator, i.e. an *increasing filtration*

$$\mathcal{O}_x^{(0)} \subset \mathcal{O}_x^{(1)} \subset \ldots \subset \mathcal{O}_x,$$

and to set up the usual structure of *operator product expansions* in terms of it.

Let \mathcal{A}_{Σ_1} denote the algebra of operators on $\mathcal{H}_{\Sigma_1 \cup \Sigma_2}$ generated by the elements of \mathcal{O}_x with $x \in \Sigma_1$, and let $\mathcal{A}^o_{\Sigma_1}$ denote its commuting algebra.

