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There is a problem in trying to do this in the presence of gravity,
because spacetime fluctuates and it is in general hard to say what
we mean by the region U .



But an even more serious problem concerns background
independence.

In ordinary quantum field theory, the algebra AU
that we associate to an open set U ⊂ M depends on M and U , of
course, but not on the state of the quantum fields. What would be
the analog of that in gravity? In gravity, the spacetime M is part
of what the fields determine, so an algebra that doesn’t depend on
the state of the quantum fields should be defined universally,
independently of M. By contrast, anything we define as the
algebra of the observables in a region U ⊂ M will depend on the
choice of M and U .
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an algebra that in some sense is universal – independent of the
choice of a specific spacetime.

We do not want an algebra that
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A clue about what we should do comes from considering the
question of why we want to define an algebra in the first place –
what is this algebra supposed to mean?

The reason for defining an
algebra should be that the operators in this algebra are the ones
that are measured by someone. In ordinary quantum mechanics,
and in quantum field theory without gravity, we usually consider
the observer to be external to the system, looking at it from
outside. Then we consider the operators probed by the observer.
For example, we can consider an observer who probes a system at
will, but only in the region U ⊂ M. That is the context in which it
makes sense to consider the algebra AU of the region U .
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In gravity, in general – for example in a typical cosmological model,
and presumably in the real world – there is no one who can look at
the system from outside so we consider the observer to be part of
the system.

The natural algebra to consider is then the algebra of
operators accessible to the observer. This has also the advantage
that it makes sense even though spacetime is fluctuating.
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Following Unruh (1976) and many others, I will model an observer
by a timelike worldline γ (which I will take to be a geodesic) and I
will assume that what the observer can measure are the quantum
fields along the worldline, which make up an algebra that I will call
A(γ).



Moreover, in the absence of gravity, as we have just heard in
Strohmaier’s lecture, A(γ) is the same as the algebra of an open
set E(γ) (the timelike envelope of γ).

So in short, A(γ) is a
reasonable substitute for the algebra of a region, which we usually
consider in the absence of gravity, and appears to make more sense
when gravity is included. We will see that A(γ) can be defined in
a background-independent way.
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Some papers on algebras in quantum gravity that are relevant to
this talk:

Algebras of operators outside a black hole horizon

Leutheusser and Liu (2021)

EW (2021), Chandrasekharan, Penington, and EW (2022)

Algebra for a static patch in de Sitter space:

(*) Chandrasekharan, Longo, Penington, and EW (2022)

In JT gravity with negative cosmological constant

Penington and EW (2023), Kolchmeyer (2023)

In a general diamond-like region

Jensen, Sorce, and Speranza (2023).

Stationary spacetimes:

Kudler-Flam, Leutheusser, and Satishchandran (2023).
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We expect that in a full theory of quantum gravity, an observer
cannot be introduced from outside but must be described by the
theory.

What it means then to assume the presence of an observer
is that we define an algebra that makes sense in a subspace of
states in which an observer is present. We don’t try to define an
algebra that makes sense in all states.
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First let us describe the algebra along the observer’s worldline in
the absence of gravity.

The observer propagates in a spacetime M
on a geodesic γ:

The worldline is parametrized by proper time τ . The observer
measures along γ, for example, a scalar field φ, or the
electromagnetic field Fµν , or the Riemann tensor Rµναβ , as well as
their covariant derivatives in normal directions.
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Focus on a particular observable, say φ(x(τ)) for a scalar field φ; I
will abbreviate this as φ(τ).

When we take gravity to be dynamical,
we have to consider that the same worldline can be embedded in a
given spacetime in different ways, differing by τ → τ + constant:

So φ(τ) isn’t by itself a meaningful observable: we need to
introduce the observer’s degrees of freedom and define τ relative
to the observer’s clock.
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In a minimal model, we equip the observer with a Hamiltonian
Hobs = mc2 + q, and a canonical variable p = −i d

dq .

However, it
turns out that it is better to assume that the observer energy is
bounded below, say q ≥ 0 (so m is the observer’s rest mass). We
then only allow operators that preserve this condition, so for
example e−ip, which does not preserve q ≥ 0, should be replaced
with Πe−ipΠ, where Π = Θ(q) is the projection operator onto
q ≥ 0.
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We now want to allow only operators that commute with

Ĥ = Hbulk + Hobs,

where Hbulk is (any) gravitational constraint operator that
generates a shift of τ along the worldline.

An operator that
commutes with Ĥ is invariant under a spacetime diffeomorphism
that moves the observer worldline forward in time, together with a
time translation of the observer’s system.
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How do we find operators that commute with Ĥ = Hbulk + Hobs?

Since
[Hbulk, φ(τ)] = −iφ̇(τ),

we need
[q, φ(τ)] = iφ̇(τ),

which we can achieve by just setting

τ = p

or more generally
τ = p + s

for a constant s.
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So a typical allowed operator is φ(p + s), or more precisely

φ̂s = Πφ(p + s)Π = Θ(q)φ(p + s)Θ(q).

In addition to these operators (with φ possibly replaced by any
local field along the worldline such as the electromagnetic field or
the Riemann tensor) there is one more obvious operator that
commutes with Ĥ, namely q itself. So we define an algebra Aobs

that is generated by the φ̂s as well as q.
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The setup hopefully sounds “background independent,” since we
described it without picking a background.

However, background
independence really depends on interpreting the formulas properly.
We will not get background independence if we interpret φ̂s and q
as Hilbert space operators. To get a Hilbert space on which φ̂s and
q act, we have to pick a spacetime M in which the observer is
propagating. Then we won’t have background independence.

To get background independence, we have to think of Aobs as an
operator product algebra, rather than an algebra of Hilbert space
operators. The algebras for different M’s are inequivalent
representations of the same underlying operator product algebra.
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In the absence of gravity, we would characterize the objects φ(τ)
by their universal short distance singularities:

φ(τ)φ(τ ′) ∼ C (τ − τ ′ − iε)−2∆ + · · · .

This characterization does not require any knowledge about the
quantum state. After coupling to gravity and including the
observer and the constraint, the short distance expansion in powers
of τ − τ ′ becomes an expansion in 1/q. We characterize Aobs

purely by the universal short distance or 1/q expansion of operator
products. With that understanding, Aobs is
background-independent.
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By a “state” of the observer algebra Aobs, we mean a linear
function O → 〈O〉 which

(1) is positive, in the sense that 〈OO†〉 ≥ 0 for all O ∈ Aobs

(2) is consistent with all universal OPE relations.
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If M is any spacetime in which the observer is found, H is the
Hilbert space that describes the fields in M together with the
observer, and Ψ ∈ H, then

O → 〈Ψ|O|Ψ〉

is a state of the algebra Aobs, by that definition.

Though these
definitions make sense for any M, they are most interesting when,
because of black hole or cosmological horizons, the part of the
universe that the observer can see does not include a complete
Cauchy hypersurface.
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There is a very special case that turns out to be important.

This is
the case that M is an empty de Sitter space, with some positive
value of the effective cosmological constant. The metric in D
dimensions is

ds2 = −dt2 + R2 cosh2 tdΩ2

where dΩ2 is the metric of a round sphere of dimension d = D − 1
and unit radius. At time t, the sphere has radius R cosh t, so it
grows exponentially toward either the past or the future.
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This spacetime can be described by a Penrose diagram:

We can pick coordinates so that the worldline γ of the observer is
the left boundary of the figure. The green region is called a static
patch, because it is invariant under a particular de Sitter generator
H that advances the proper time of the observer.
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In the absence of gravity, there is a distinguished de Sitter
invariant state ΨdS which can be defined by analytic continuation
from Euclidean space.

The relation to Euclidean space can be used
to prove that correlation functions in this state are thermal at the
de Sitter temperature TdS = 1/βdS (Gibbons and Hawking; Figari,
Nappi, and Hoegh-Krohn).
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The assertion that the correlation functions are thermal means that
two point functions 〈ΨdS|φ(τ)φ′(τ ′)|ΨdS〉 have two key properties:

(1) Time translation symmetry:

〈ΨdS|φ(τ + s)φ′(τ ′ + s)|ΨdS〉 = 〈ΨdS|φ(τ)φ′(τ ′)|ΨdS〉.

(2) The KMS condition:

〈ΨdS|φ(τ)φ′(0)|ΨdS〉 = 〈ΨdS|φ′(0)φ(τ − iβ)|ΨdS〉.
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To understand the KMS condition: for an ordinary thermal system
with Hamiltonian H, define the thermal density matrix ρ = 1

Z e
−βH

and time-dependent operators A(t) = e iHtA(0)e−iHt ,
B(t) = e iHtB(0)e−iHt .

Then time-dependent thermal correlators
are defined by, for example,

〈A(t)B(0)〉β = Tr ρA(t)B(0) =
1

Z
Tr e−βHe iHtA(0)e−iHtB(0)

= Tr ρB(0)e iH(t+iβ)A(0)e−iH(t+iβ) = 〈B(0)A(t+iβ)〉β.
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Including gravity and the observer, we define a special state in
which the observer energy has a thermal distribution at the de
Sitter temperature

Ψmax = ΨdSe
−βdSq/2

√
βdS,

and we replace operators φ(τ) by “gravitationally dressed”
operators φ̂s = Πφ(p + s)Π.

Then a straightforward computation
shows that

(1′) We still have time-translation symmetry

〈Ψmax|φ̂s φ̂′s′ |Ψmax〉 = 〈Ψmax|φ̂′s+c φ̂
′
s′+c |Ψmax〉, c ∈ R.

(2′) The KMS condition simplifies:

〈Ψmax|φ̂s φ̂′s′ |Ψmax〉 = 〈Ψmax|φ̂′s′ φ̂s |Ψmax〉.
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Statement (1′) is fairly obvious, and statement (2′) can be proved
by a simple contour deformation argument, though I reluctantly
decided not to show the proof (see arXiv:2308.03663).



Condition (2′) tells us that if, for any a ∈ Aobs, we define

Tr a = 〈Ψmax|a|Ψmax〉,

then the function Tr does have the algebraic property of a trace:

Tr ab = Trba, a,b ∈ Aobs.

This function has the property that Tr a†a > 0 for all a 6= 0,
meaning in particular that it is “nondegenerate.” Note that if
Ψmax is normalized to 〈Ψmax|Ψmax〉 = 1, then

Tr 1 = 1.
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Although Tr has the algebraic properties of a trace, it is not
actually a trace in any representation of the algebra Aobs.

We do
have a Hilbert space representation of Aobs, namely it acts on
HdS ⊗ L2(R+), where HdS is the Hilbert space that describes
quantum fields in de Sitter space and L2(R+) is the Hilbert space
of the observer. However, the trace of an element of Aobs in this
Hilbert space is infinite. Instead the operation that I have denoted
as Tr is a sort of renormalized trace.
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Let Ψ be any state in HdS and consider the function a→ 〈Ψ|a|Ψ〉,
a ∈ Aobs.

Roughly speaking, because Aobs has the nondegenerate
trace Tr, we can hope that there is a “density matrix” ρ ∈ Aobs

such that
〈Ψ|a|Ψ〉 = Tr aρ, a ∈ Aobs.

Rather as in ordinary quantum mechanics, we expect ρ to be a
positive element ρ ∈ Aobs with Tr ρ = 1. For example, let us find
the density matrix of the state Ψmax.
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The definition of the trace makes it clear that the density matrix of
the state Ψmax is σmax = 1, since to satisfy

〈Ψmax|a|Ψmax〉 = Tr aσmax ≡ 〈Ψmax|aσmax|Ψmax〉,

we set
σmax = 1.

This means that Ψmax is “maximally mixed,” similar to a
maximally mixed state in ordinary quantum mechanics whose
density matrix is a multiple of the identity.
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Now if a ∈ Aobs is any operator, consider the state Ψa = aΨmax.

It has a density matrix ρΨa = aa†, since for any b ∈ Aobs,

〈Ψa|b|Ψa〉 = 〈Ψmax|a†ba|Ψmax〉 = Tr a†ba = Trbaa†.

But states Ψa are dense in HdS – roughly by the Reeh-Schlieder
theorem, which is the fundamental result about entanglement in
quantum field theory. So a dense set of states have density
matrices.
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If we want all states to have density matrices, we need to take a
useful further step.

The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs. (Here “von Neumann algebra” is essentially a fancy name
for an algebra of operators acting on a Hilbert space, closed under
limits and under hermitian conjugation.) I will call the closure
Aobs,dS. Every state in HdS has a density matrix in Aobs,dS. It is in
this step that von Neumann algebras enter the picture.



If we want all states to have density matrices, we need to take a
useful further step. The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs.

This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs. (Here “von Neumann algebra” is essentially a fancy name
for an algebra of operators acting on a Hilbert space, closed under
limits and under hermitian conjugation.) I will call the closure
Aobs,dS. Every state in HdS has a density matrix in Aobs,dS. It is in
this step that von Neumann algebras enter the picture.



If we want all states to have density matrices, we need to take a
useful further step. The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs.

(Here “von Neumann algebra” is essentially a fancy name
for an algebra of operators acting on a Hilbert space, closed under
limits and under hermitian conjugation.) I will call the closure
Aobs,dS. Every state in HdS has a density matrix in Aobs,dS. It is in
this step that von Neumann algebras enter the picture.



If we want all states to have density matrices, we need to take a
useful further step. The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs. (Here “von Neumann algebra” is essentially a fancy name
for an algebra of operators acting on a Hilbert space, closed under
limits and under hermitian conjugation.)

I will call the closure
Aobs,dS. Every state in HdS has a density matrix in Aobs,dS. It is in
this step that von Neumann algebras enter the picture.



If we want all states to have density matrices, we need to take a
useful further step. The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs. (Here “von Neumann algebra” is essentially a fancy name
for an algebra of operators acting on a Hilbert space, closed under
limits and under hermitian conjugation.) I will call the closure
Aobs,dS.

Every state in HdS has a density matrix in Aobs,dS. It is in
this step that von Neumann algebras enter the picture.



If we want all states to have density matrices, we need to take a
useful further step. The Hilbert space HdS is the closure of a dense
set of states aΨdS, so if we want every state in HdS to have a
density matrix, we have to similarly take a closure of Aobs. This
closure, which is no longer background independent, can be defined
as the von Neumann algebra generated by bounded operators in
Aobs. (Here “von Neumann algebra” is essentially a fancy name
for an algebra of operators acting on a Hilbert space, closed under
limits and under hermitian conjugation.) I will call the closure
Aobs,dS. Every state in HdS has a density matrix in Aobs,dS. It is in
this step that von Neumann algebras enter the picture.



In fact, in the example of de Sitter space, the algebra obtained this
way is of Type II1, as follows from the existence and properties of
the trace. (This is discussed in the CLPW paper, where this
construction was originally motivated in a different way.)

This
contrasts with the situation in quantum field theory without
gravity, where the algebras AU are of Type III (as discovered by
Araki 1964) and accordingly no trace exists and there is no notion
of a density matrix. (One runs into ultraviolet divergences if one
attempts to define density matrices and entropies in quantum field
theory without gravity.)
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In general, just as in ordinary quantum mechanics, a density matrix
in the present context is a positive operator of trace 1 in (or
affiliated to) the algebra, and any such positive operator of trace 1
is the density matrix of some state.

An example of a state whose
density matrix is ρ is ρ1/2Ψmax, where ρ1/2 is the positive square
root of ρ.
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Once we know that every state has a density matrix, we can define
entropies as well.

The von Neumann entropy of a density matrix ρ
is as usual

S(ρ) = −Tr ρ log ρ.

Why is this important? In ordinary quantum field theory without
gravity, one can try to define a density matrix ρ that describes
observations in a region of spacetime

and then one can try to define an entropy S(ρ) = −Tr ρ log ρ. But
as was first shown by R. Sorkin (1983), this doesn’t work: the
entropy of any region is ultraviolet divergent. An abstract
explanation is that in the absence of gravity, the algebras AU are
of Type III (as first found by Araki in 1964).
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Since work of Bekenstein (1972) and Hawking (1974), it has been
argued that entropy makes more sense in the presence of gravity
than in ordinary quantum field theory – at least for certain regions
such as the exterior of a black hole or the static patch in de Sitter
space.

It has been claimed that at least in a semiclassical
approximation, the appropriate notion of entropy including black
hole or cosmological horizons is the “generalized entropy”

Sgen =
A

4G
+ Sout,

where A is the area of the horizon – the black hole or cosmological
horizon – and Sout is the ordinary entropy of matter and radiation
outside the black hole horizon or (in the cosmological case) in the
region of spacetime visible to an observer. In the case of de Sitter
space, assuming we are interested in the portion of spacetime
visible to an observer in a given static patch, Sout would be the
entropy of matter and radiation inside that static patch.
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The proposal that

Sgen =
A

4G
+ Sout

is an entropy has passed many tests.

For example, in the presence
of a black hole the usual second law of thermodynamics is not
true: Sout will go down, as Bekenstein said, if I toss a cup of tea
into a black hole. But it turns out that there is a generalized
second law (Wall, 2011): Sgen is always increasing.
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Although there has been plenty of evidence that Sgen behaves like
an entropy, the sense in which it actually is an entropy has been
unclear.

What I have told you gives at least a partial answer to this
question, because it is possible to show (CLPW 2022) that entropy
defined as I have explained agrees up to an additive constant
independent of the state with the usual generalized entropy

Sgen =
A

4G
+ Sout

for a suitable class of semi-classical states Ψ ∈ HdS. An additive
constant is missing because entropy defined this way is really a sort
of renormalized entropy, from which an infinite constant has been
subtracted. (For more on entropy of a state of a Type II algebra,
see Longo and EW (2021). As we will see, the missing constant is
the entropy of the maximum entropy state, where is 0 with the
definitions I have given, but equals AdS/4G in more standard
approaches.)
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Now I am going to discuss a basic fact about mixed states in
quantum mechanics.

In ordinary quantum mechanics, a maximally
mixed state has a density matrix that is a multiple of the identity,
and it has the maximum possible value of the von Neumann
entropy S(ρ) = −Tr ρ log ρ. The analog here is the state Ψmax,
with density matrix σmax = 1. It is clear that

S(σmax) = −Tr 1 log 1 = 0,

and by imitating an argument that in ordinary quantum mechanics
proves that a maximally mixed state has maximum possible
entropy, one can prove that every other density matrix ρ 6= 1 has
strictly smaller entropy:

S(ρ) < 0.

So Ψmax is a state of maximal possible entropy.
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Thus, the system consisting of an observer in a static patch in de
Sitter space has a state of maximum entropy

Ψmax = ΨdSe
−βdSq/2

√
βdS,

consisting of empty de Sitter space with a thermal distribution of
the observer energy.

Why did this happen?
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In fact, it was claimed long ago that empty de Sitter space has maximum
entropy (Bousso 2000).

The original argument that this must be true
was just based on the Second Law of Thermodynamics. Bousso observed
that the static patch is empty in the far future:

Since the static patch spontaneously evolves to become empty in the far
future, the Generalized Second Law seems to imply that an empty static
patch must have maximum entropy.
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Concerning this argument,

we note that in our discussion we’ve defined the static patch by the
presence of the observer, so by definition the observer doesn’t leave the
static patch even in the far future. But we can expect that in the far
future the static patch will be empty except for the presence of the
observer, and that the observer will be in thermal equilibrium with the
bulk quantum fields, and that is what we see in the state Ψmax. So the
maximum entropy state that we found is the one suggested by Bousso’s
argument.
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Note that Bousso made his argument without having any precise
explanation of why or in what sense the generalized entropy Sgen –
which he claimed is maximized by empty de Sitter space – actually
is an entropy.

We have recovered Bousso’s claim with a precise
definition of entropy as the von Neumann entropy of a state of an
algebra.
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It might come as a surprise that empty de Sitter space has
maximum entropy.

If we put matter and radiation in the static
patch, will not this increase the entropy of the static patch? It
turns out that if we put matter and radiation in the static patch,
then the gravity of the matter and radiation causes the area of the
cosmological horizon to become smaller, and this reduces the
generalized entropy A/4G + Sout.
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Physically, entropy defined in terms of a state of the observer
algebra Aobs,dS is a renormalized entropy from which an overall
constant, independent of the state, has been subtracted.

Thus the
entropy of the maximum entropy state Ψmax has been set to zero,
while actually physically it is large, S ≈ Ahor/4G . If we consider
instead of de Sitter space some other spacetime M, and we are
able to repeat the analysis, we will again get a definition of
entropy, again up to an additive constant. It is not satisfactory to
have a new additive constant for each spacetime; this leaves us
with no ability to compare the different spacetimes. It would be
much nicer to have a definition of entropy with only one overall
renormalization constant, independent of the spacetime. I believe
that this may be the best possible in a picture based on algebras
rather than quantum microstates, or possibly, in a picture in which
semiclassical ideas about spacetime make sense.
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In my paper, I proposed a somewhat speculative method to refine
the definition of entropy so that there would be only one overall
additive renormalization constant, independent of spacetime, thus
making it possible to compare the entropies of different spacetimes.

The main idea was to use the Hartle-Hawking “no boundary” state
(which formally makes sense in any spacetime) rather than the de
Sitter state ΨdS. In this rather speculative discussion, I also
proposed that the von Neumann algebra completion of the observer
algebra Aobs is of Type II in any spacetime M in which what the
observer can see is limited by past and future horizons (and Type I
if there are no horizons). This contrasts with the fact that the
local algebras AU are Type III in quantum field theory without
gravity. Both because of time and because it is so speculative, I
will not explain details, but I hope something like that will pan out.
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I will conclude with the following thought.

Stephen Hawking
famously said that an observer who cannot see the whole universe
must describe the visible part by a quantum mechanical mixed
state – a density matrix – rather than a quantum mechanical pure
state. In ordinary quantum field theory without gravity, this
technically does not work: the attempt to define a density matrix
appropriate to observations in a region of spacetime runs into
ultraviolet divergences (related to the fact that the algebras AU
are of Type III in quantum field theory without gravity). With
gravity, at least for the case of the static patch in de Sitter space,
we’ve learned how to define a density matrix appropriate to the
measurements of an observer. Thus we have found a framework in
which Hawking’s vision is true literally, not just in spirit. I am
hoping that this is true in general.
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