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Signal communication

Suppose Alice sends a signal to Bob that is codified by a function
of time f . Bob can measure the value f only within a certain time
interval; moreover, the frequency of f is filtered by the signal
device within a certain interval in the spectrum amplitude

Alice Bob

Say both intervals are equal to B = (−1, 1). As is well known, if a
function f and its Fourier transform f̂ are both supported in
bounded intervals, then f is the zero function. So one is faced with
the problem of simultaneously maximizing the portions of energy
and amplitude spectrum within the intervals

||f ||2,B , ||f̂ ||2,B ,

||f ||2 = ||f̂ ||2 = 1, the concentration problem.
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The concentration problem

The problem of best approximating, with support concentration, a
function and its Fourier transform is a classical problem; in
particular, it lies behind Heisenberg uncertainty relations in
Quantum Mechanics and is studied in Quantum Field Theory too
(Jaffe, etc.)

In the ‘60ies, this problem was studied in seminal works by Slepian,
Pollak and Landau. Denote by F : f 7→ f̂ the Fourier transform
and by FB the truncated Fourier transform

FB = EBFEB

EB = χB ,

(FB f )(p) =
χB(p)√

2π

∫
B
f (x)e−ixpdx

as an operator on L2(B).

2 / 29



The functions that best maximize the concentration problem are
eigenfunctions of FB with the highest eigenvalues.

Since ||F∗BFB || = ||FB ||2, one can equivalently consider the angle
operator

TB ≡ F∗BFB = EB ÊBEB

with ÊB = F∗EBF . This is a L2(B) Hilbert-Schmidt operator

TB =

∫
B
kB(x − y)f (y)dy

k(x) =
1

(2π)1/2

sin x

x

and one has the eigenvalue problem

TB f = λf

The eigenvalue λ measures the level of concentration of the
corresponding eigenfunction f .
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Slepian-Pollak table

Figure: The first eigenvalues λn of TB

c = product of support lengths
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The lucky accident

The spectral analysis of the angle operator is not easily doable a
priori.
However, by the lucky accident figured out in by Slepian et al. ,
this integral operator commutes with a linear differential operator,
the prolate operator

W =
d

dx
(1− x2)

d

dx
− x2 ,

indeed, FB commutes with W , so these eigenfunctions were
computed.

W is a classical operator, it arises by separating the 3-dimensional
scalar wave equation in a prolate spheroidal coordinate system.
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Connes and Moscovici recently showed a remarkable relation of the
prolate spectrum with the asymptotic distribution of the zeros of
the Riemann ζ-function.

Here, I want to understand the role of the prolate operator on a
conceptual basis, in relation to the mentioned lucky accident: the
prolate operator as an entropy operator.

I will generalize the prolate operator in higher dimensions, guided
by QFT

W = ∇(1− r2)∇2 − r2 = (1− r2)∇2 − 2r∂r − r2

On S(Rd), W is Hermitian non-selfadjont but admits a natural
extension that commutes FB (In the one-dimensional case, the
extension is selfadjoint (Connes)).

The expectation values of W on L2(B) will be entropy quantities
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Tomita-Takesaki modular theory

M a von Neumann algebra on H, ϕ = (Ω, ·Ω) normal faithful
state on M. Embed M into H

S0 : XΩ 7→ X ∗Ω, X ∈M

SM = S̄0 = JM∆
1/2
M , polar decomposition, ∆M and JM modular

operator and conjugation

t ∈ R 7→ σϕt ∈ Aut(M)

σϕt (X ) = ∆it
MX∆−itM , X ∈M

modular automorphisms intrinsic evolution associated with ϕ!

JMMJM =M′ on H

log ∆M is called the modular Hamiltonian of ϕ
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Araki’s relative entropy

An infinite quantum system is described by a von Neumann
algebra M typically not of type I so Tr does not exist; however
Araki’s relative entropy between two faithful normal states ϕ and
ψ on M is defined in general by

S(ϕ||ψ) ≡ −(η, log ∆ξ,η η)

where ξ, η are cyclic vector representatives of ϕ,ψ and ∆ξ,η is the
relative modular operator associated with ξ, η.

S(ϕ||ψ) ≥ 0

positivity of the relative entropy
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Standard subspaces

H complex Hilbert space and H ⊂ H a closed, real linear subspace.
Symplectic complement:

H ′ = {ξ ∈ H : =(ξ, η) = 0 ∀η ∈ H}

H is a standard subspace if it is H cyclic if H + iH = H and
separating H ∩ iH = {0}

H standard subspace → anti-linear operator SH

SH : ξ + iη → ξ − iη, ξ, η ∈ H

S2
H = 1|D(SH), D(SH) = H + iH. SH is closed, densely defined,

S∗H = SH′
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Modular theory for standard subspaces

Set SH = JH∆
1/2
H , polar decomposition. Then JH is an anti-unitary

involution, ∆H > 0 is non-singular called the modular conjugation
and the modular operator; they satisfy JH∆HJH = ∆−1

H and

∆it
HH = H, JHH = H ′

(one particle Tomita-Takesaki theorem).

Example: M von Neumann algebra on H, Ω cyclic separating
vector

H =Ms.a.Ω is a standard subspace of H

∆H = ∆M, JH = JM
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Passivity

log ∆H is characterised by complete passivity, following Pusz and
Woronowicz in the von Neumann algebra case

H a complex Hilbert space, H ⊂ H a standard subspace and A a
selfadjoint linear operator on H such that e isAH = H, s ∈ R.

A is passive with respect to H if

−(ξ,Aξ) ≥ 0 , ξ ∈ D(A) ∩ H .

A is completely passive w.r.t. H if the generator of
e itA ⊗ e itA · · · ⊗ e itA is passive with respect to the n-fold tensor
product H ⊗ H ⊗ · · · ⊗ H, all n ∈ N.

A is completely passive with respect to H iff log ∆H = λA for
some λ ≥ 0.

positivity of energy ! comp. passivity of modular Hamiltonian
(equivalence in principle)
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Entropy of a vector relative to a real linear subspace

Let H be a complex Hilbert space and H ⊂ H a standard subspace

The entropy of a vector h ∈ H with respect to H ⊂ H is defined
by

S(h||H) = −=(h,PH i log ∆H h) = <(h, iPH i log ∆H h)

(in a quadratic form sense), where PH is the cutting projection

PH : H + H ′ → H , h + h′ 7→ h

We have P∗H = −iPH i and the formula

PH = (1 + SH)(1−∆H)−1

= (1−∆H)−1 + JH∆
1/2
H (1−∆H)−1 ;

(PH is the closure of the right-hand side).

In QFT, the cutting projection PH is geometric.
12 / 29



Properties of the entropy of a vector

Some of the main properties of the entropy of a vector are:

S(h||H) ≥ 0 or S(h||H) = +∞ positivity

If K ⊂ H, then S(h||K ) ≤ S(h||H) monotonicity

If hn → h, then S(h||H) ≤ lim infn S(hn|H) lower
semicontinuity

If Hn ⊂ H is an increasing sequence with
⋃

n Hn = H, then
S(h||Hn)↗ S(h||H) monotone continuity

If h ∈ D(log ∆H) then S(h||H) <∞ finiteness on smooth
vectors

S(h||H) = S(k ||H) if k − h ∈ H ′ locality
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Entropy of coherent sectors

Given Φ ∈ H consider coherent state ϕΦ on Weyl von Neumann
algebra A(H) on the Bose Fock space eH:

The vacuum relative entropy of ϕΦ on A(H) is given by

S(ϕΦ||ϕ0) = S(Φ||H)

Araki’s relative entropy Entropy of vector

(ϕ0 vacuum state)
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Entropy operator

The entropy operator EH is defined by

EH = iPH i log ∆H

(closure of the right-hand side). We have

S(h||H) = (h, EHh) , k ∈ H .

real quadratic form sense.

The entropy operator EH is real linear, positive, and selfadjoint
w.r.t. to the real part of the scalar product.

In my view, an entropy operator E is a real linear operator on a real
or complex Hilbert space H, such E is positive, selfadjoint and its
expectation values (f , Ef ), f ∈ H, correspond to entropy quantities
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The information in a wave packet

By a wave (or wave packet), we mean a real solution of the wave
equation

�Φ = 0 ,

with compactly supported, smooth Cauchy data Φ|x0=0, Φ′|x0=0.

Classical field theory describes Φ by the stress-energy tensor Tµν ,
which provides the energy-momentum density of Φ at any time.

But, how to define the information, or entropy, carried by Φ in a
given region at a given time?

We give an answer to a classical question by Operator Algebras
and Quantum Field Theory

Joint works with F. Ciolli, G. Ruzzi, G. Morsella
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Local entropy of a wave packet

The real linear wave’s space T is given in Cauchy data

Φ↔ 〈f , g〉 ∈ S(Rd)× S(Rd)

• The complex structure on T is then

ı0 =

[
0 µ−1

−µ 0

]
, µ =

√
−∇2

• The scalar product on T is the unique Poincaré covariant one

• Local structure: Waves with Cauchy data supported in region O
(causal envelop of a space region B) form a real linear subspace
H(O) ≡ H(B).

• The information S(Φ||O) carried by the wave Φ in the region O
is the entropy S(Φ||H(O)) of the vector Φ w.r.t. H(O)
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Double cone, conformal case

For a bounded region O (double cone, causal envelop of a space
ball B), in the conformal case the modular group is given by the
geometric transformation (Hislop, L. ‘81)

x10

t

local modular trajectories

(u, v) 7→
(
(Z(u, s),Z(v , s)

)

Z (z , s) = (1+z)+e−s(1−z)
(1+z)−e−s(1−z)

u = x0 + r , v = x0 − r , r = |x| ≡
√
x2

1 + · · ·+ x2
d
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Massless modular Hamiltonian

In terms of the wave Cauchy data, the local massless modular
Hamiltonian associated with the unit space ball B is given by

log ∆B = −2πı0

[
0 1

2 (1− r2)
1
2 (1− r2)∇2 − r∂r − D 0

]
D = (d − 1)/2 the scaling dimension of the free scalar field.

Namely

log ∆B = −2πı0

[
0 M

L− D 0

]
with

M = Multiplication operator by
1

2
(1− r2)

L = Legendre operator
1

2
(1− r2)∇2 − r∂r
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Entropy density of a wave packet

The classical stress-energy tensor gives the energy

〈T (0)
00 〉Φ =

1

2

(
(∂0Φ)2 + |∇xΦ|2

)
we then have

−(Φ, log ∆BΦ) = 2π

∫
x0=0

1− r2

2
〈T (0)

00 〉Φ(x)dx + πD

∫
x0=0

Φ2dx

The entropy of a wave Φ in the unit ball B is

S(Φ||B) = 2π

∫
B

1− r2

2
〈T (0)

00 〉Φ(x)dx + πD

∫
B

Φ2dx

Massive case: numerical results by H. Bostelmann, D. Cadamuro, C.

Minz
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Asymptotics

With S(Φ||R) the entropy of the wave packet Φ in the radius R
ball BR

S(Φ||R)

R
∼ πER , R →∞

ER =
∫
BR

T
(0)
00 dx, in agreement with the Bekenstein bound

S(Φ||R)

R
≤ πRER

On the other hand, as R → 0,

S(Φ||R) = 2π
d − 1

d
Ad−1(R)Φ2(0, 0) + · · ·

Ad−1(R) area of the d − 1 dimensional sphere ∂BR (cf.
holographic thms)
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Higher-dimensional Legendre operator

The Legendre operator is the one-dimensional Sturm-Liouville
linear differential operator d

dx (1− x2) d
dx . We consider a natural

higher-dimensional generalization.

We denote by L the d-dimensional Legendre operator, on L2(Rd),
initialliy defined on S(Rd)

L = ∇(1− r2)∇ = (1− r2)∇2 − 2r∂r ;

The quadratic form associated with L is

(f , Lg) = −
∫
Rd

(1− r2)∇f̄ ·∇g dx , f , g ∈ S(Rd) ,

L is a Hermitian operator.
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Higher-dimensional prolate operator

Let W be the operator on L2(Rd) given by

W = ∇(1− r2)∇− r2 = L− r2

with D(W ) = S(Rd). W is a higher-dimensional generalisation of
the prolate operator.

W is a Hermitian, being a Hermitian perturbation of L on S(Rd);
moreover,

−W ≥ −L ≥ 0

on D(W ) ∩ L2(B)
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Note the equality
W = L + M − 1

with M multiplication by (1− r2). This makes a connection with
the modular Hamiltonian

• W commutes with the Fourier transformation F :

Ŵ = W .

• Any linear combination of L and M commuting with F is
proportional to W

• W has a natural Hermitian extension that commutes with F and
EB , thus with ÊB and FB too

24 / 29



Higher dimensional angle operator

The angle operator EB ÊBEB is of trace class, indeed EB ÊB |L2(B) is

the positive Hilbert-Schmidt TB on L2(B) with kernel kB(x − y)

kB(z) =
1

(2π)d/2

∫
B
e−ix ·zdx χB(z)

The eigenvalues of TB are strictly positive, with finite multiplicity

λ1 > λ2 > · · ·λk > · · · > 0

The k-eigenfunctions are concentrated at level λk in an
appropriate sense

−EBW is positive. Both W and L commute with EB , and we
consider their restrictions WB and LB to L2(B)
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Legendre and Parabolic entropies

The entropy operator E ′B on L2(Rd)⊕ L2(Rd) corresponding to EB
is given by

E ′B =

[
−πEBLD 0

0 πEBM

]
With f ∈ S(Rd) real, we set

π(f ,Mf )B = π

∫
B

(1− r2)f 2dx = parabolic entropy of f in B .

−π(f , Lf )B = π

∫
B

(1− r2)|∇f |2dx = Legendre entropy of f in B

(the modular Hamiltonian gives rise to two entropies on Cauchy
data, the filed entropy and the momentum entropy)
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Prolate entropy

The Parabolic/Legendre entropies are the field/momentum
entropies associated with a wave

Now, −LEB = −WEB + MEB − EB , so πWEB is an entropy
operator too; we thus define:

−π(f ,Wf )B = π

∫
B

(
(1−r2)|∇f |2+r2

)
dx = prolate entropy of f in B ,

f ∈ S(Rd) real.

Conclusion

−πWEB is an entropy operator on L2(Rd). The sum of the
prolate entropy and the parabolic entropy is equal to the sum of
the Legendre entropy and the Born entropy, all with respect to B
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The measure of concentration

One-dimensional case: As TB is strictly positive and
Hilbert-Schmidt, its eigenvalues can be ordered as
λ1 > λ2 > · · · > 0; they are simple.

the eigenvalues of −WB can be ordered as

α1 < α2 < · · · <∞

correspond to the λk ’s in inverse order. Then

(fk ,TB fk)B = λk , −(fk ,WB fk)B = αk ,

and παk is the prolate entropy of fk .

lower prolate entropy←→ higher concentration

where the concentration is both on space and in Fourier modes as
above. This is intuitive since information is the opposite of entropy.
In other words, in order to maximize simultaneously both
quantities ||f ||2,B/||f ||2 and ||f̂ ||2,B/||f ||2 we have to minimize the
prolate entropy.
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The lucky accident is not an accident

−πWEB is an entropy operator on L2(Rd):

−π(f ,Wf )B is the sum of the Legendre entropy of f and π||f ||2B
(Born entropy), minus the parabolic entropy of f , i.e.

−π(f ,Wf )B+π

∫
B

(1−r2)f 2dx = π

∫
B

(1−r2)|∇f |2dx+π

∫
B
f 2dx .

We conclude that −π(f ,Wf )B is an entropy quantity, i.e. a
measure of information, the prolate entropy of f w.r.t. B.

The lucky accident, that W commutes with the truncated Fourier
transform, finds a conceptual clarification in this fact; namely, W
is a natural a priori candidate to commute with FB

29 / 29


