

Local quantum system and gapped quantum phase

- Definition: A local quantum system is described by (\mathcal{V}_N, H_N)
	- $\mathcal{V}_\mathcal{N}$: a Hilbert space with a tensor structure $\mathcal{V}_\mathcal{N} = \otimes_{i=1}^N \mathcal{V}_i$
	- H_N : a local Hamiltonian acting on V_N : $H_N = \sum \hat{O}_{ij}$

- A gapped ground state (a concept for $N \to \infty$ limit) has $\Delta \rightarrow$ finite non-zero and $\epsilon \rightarrow 0$. A gapped ground state is not a single vector in V_N , but a subspace $V_{\text{grnd space}} \subset V_N$.
- Two gapped Hamiltonian $H(0)$ and $H(1)$ are equivalent if they are connected by a path $H(\tau)$, $\tau \in [0,1]$ of gapped Hamiltonians. Their ground states are also equivalent. The equivalence classes of gapped ground states are gapped quantum phases of matter
- Phases of matter is a central issue in condensed matter physics Xiao-Gang Wen, MIT [Topological order and generalized symmetry](#page-0-0) 2 / 19

Symmetry breaking phases and beyond \rightarrow topologically ordered phases

- For a long time, we thought that non-trivial gapped phases exist only when the Hamiltonians have a symmetry: $WHW^{\dagger} = H$, where the unitary operators W form a symmetry group G_H . $\varepsilon \rightarrow 0$ ∆ ground–state Δ ->finite gap A classification: Gapped quantum phases are classified by a pair (G_H, G_{Ψ}) $(G_{\Psi} \subset G_H)$: G_H is the symmetry group of Hamiltonian. G_{Ψ} is the group that acts trivially in ground state subspace
- In 1989, we realized that non-trivial gapped phases of matter exist even without symmetry, *ie* $G_H = {\mathbf{id}} \rightarrow$ notion of **Topological** order. Examples include chiral spin states and fraction quantum Hall (FQH) states. Wen, PRB ⁴⁰ 7387 (89); IJMP ⁴ 239 (90)

What is topological order?

• How to extract macroscopic character^{1E}. Witten, Commun. Math. Phys. 121, 351 (1989); 117, 353
(1989); $\frac{1}{10}$
(1989); $\frac{1}{10}$
(1989); $\frac{1}{10}$
(1989); $\frac{1}{10}$
(1989); $\frac{1}{10}$
(1989); $\frac{1}{10}$
(1989); (topological invariants) from complicated many-body wavefunction $\Psi({\bf x}_1, \cdots, {\bf x}_{10^{20}})$

 (1988)

- G. V. Dunne, R. Jackiw, and C. A. Trungenberg, Report No. MIT-CTP-1711, 1989 (unpublished); S. Elitzur, G. Moore. A. Schwimmer, and N. Seiberg, Report No. IASSNS-HEP-89/20, 1989 (unpublished).
- ³V. Kalmeyer and R. Laughlin, Phys. Rev. Lett. 59, 2095 (1988); X. G. Wen and A. Zee (unpublished); P. W. Anderson (unpublished); P. Wiegmann, in Physics of Low Dimensional Systems, edited by S. Lundqvist and N. K. Nilsson (World Scientific, Singapore, 1989).
- ⁴X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989); D. Khveshchenko and P. Wiegmann (unpublished).
⁵G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988).
-

Put the gapped system on space with various topologies, and measure the ground state degeneracy \rightarrow topological

order

Vacuum degeneracy of chiral spin states in compactified space

X G Wen

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 10 May 1989)

A chiral spin state is not only characterized by the T and P order parameter E_{123} $=S_1$ ($S_2 \times S_3$), it is also characterized by an integer k. In this paper we show that this integer k can be determined from the vacuum degeneracy of the chiral spin state on compactified spaces. On a Riemann surface with genus g the vacuum degeneracy of the chiral spin state is found to be $2k^g$. Among those vacuum states, some k^g states have $\langle E_{123} \rangle > 0$, while other k^g states have $\langle E_{123} \rangle$ < 0. The dependence of the vacuum degeneracy on the topology of the space reflects some sort of topological ordering in the chiral spin state. In general, the topological ordering in a system is classified by topological theories.

Robust ground state degeneracy \rightarrow phase of matter

- $\textbf{Objection:}$ Ground state degeneracy (GSD) on $\mathcal{S}^2\neq\text{GSD}$ on \mathcal{T}^2 coming from the motion of center of mass. GSD is just a finite size effect, which does not reflect the thermodynamic phase of matter.
- We showed that the ground state degeneracy is **robust** against any local perturbations. GSD can change only after a phase transition \rightarrow The robust ground state degeneracy characterize new phases of matter \rightarrow topological (=robust) order. Wen Niu PRB 41, 9377 (90)

• The microscopic mechanism of superconductivity: electron pairing and their condensation

The microscopic mechanism of topological order is **long range entanglement**

WHOLE = \sum parts +

Wen, PRB 40 7387 (89); IJMPB 4, 239 (90). Chen Gu Wen arXiv:1004.3835 For a many-body state $|\Psi\rangle=\sum_{m_i}\Psi(m_1,...,m_{10^{23}})|\{m_i\}\rangle$, knowing all its overlapping parts still cannot determine the whole state $|\Psi\rangle$. **Xiao-Gang Wen, MIT** [Topological order and generalized symmetry](#page-0-0) Topological order and generalized symmetry 5/19

Theory of topo. order (long range entanglement)

Symmetry breaking orders are described by group theory. What theory describes topological orders (long range entanglement)?

There are two approaches:

• Ground states: Robust degenerate ground states form vector bundles on moduli spaces of gapped Hamiltonians \rightarrow moduli **bundle theory** for topological orders.

Wen, IJMPB 4, 239 (90); Wen Niu PRB 41, 9377 (90)

• Excitations: The anyons are described by their fusion and **braiding** \rightarrow **modular tensor category theory** for topological orders Moore Seiberg CMP ¹²³ 177 (89). Witten, CMP ¹²¹ 352 (89)

Moduli bundle theory of topological order

Modular tensor category theory for anyons and $2+1D$ topological orders

• Excitation in 2+1D topological order \rightarrow **Braided** fusion category (or modular tensor category MTC) \rightarrow A theory for 2+1D topological orders for bosons. rational CFT \rightarrow TQFT \rightarrow MTC

.

Moore-Seiberg CMP 123 177 (89); Witten, CMP 121 352 (89)

- In higher dimensions, topological excitations can be **point-like, string-like,** etc, which can fuse and braid \rightarrow
- Topological excitations are described by **non-degenerate** braided fusion n-categories.
- This leads a theory and a classification of topological orders in n spacial dimensions (up to invertible topological orders).

Lan Kong Wen, arXiv:1704.04221 for 3+1D

Classify $2+1D$ bosonic topological orders (TOs)

Using moduli bundle theory (ie $SL(2, \mathbb{Z})$ representations), plus input from modular tensor category (MTC), we can classify MTCs, ie 2+1D bosonic topological orders (up to invertible $E(8)$ states):

Rowell Stong Wang, arXiv:0712.1377: up to rank 4 Bruillard Ng Rowell Wang, arXiv:1507.05139: up to rank 5 Ng Rowell Wang Wen, arXiv:2203.14829: up to rank 6 Ng Rowell Wen, arXiv:2308.09670: up to rank 11

• This classifies all $2+1D$ gapped phases for bosonic systems without symmetry, with 11 topological excitations or less.

Classify 3+1D bosonic topological orders (ie non-degenerate braided fusion 2-category)

- A $3+1D$ topological order in bosonic system with no symmetry has point-like and string-like excitations $=$ an unitary non-degenerate braided fusion 2-category.
- The point-like excitations have trivial mutual statistics and are bosons or fermions described by **symmetric fusion category (SFC)**. Due to **Tanaka duality**, the point-like excitations are described by representations of a group $\mathcal G$ or $\mathbb Z_2^f \leftthreetimes \mathcal G_b.$

Topological holographic principle

String holographic principle: Susskind hep-th/9409089 boundary $CFT = bulk AdS$ gravity Maldacena hep-th/9711200

• Holographic principle of topological order:

Boundary determines bulk, but bulk does not determine boundary

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690 The excitations in a $n + 1D$ topological order are described by a braided fusion n -category M. The excitations on its gapped boundary of are described by a fusion *n*-category $\mathcal F$ **F** determines M: $\mathcal{Z}(\mathcal{F}) = \mathcal{M}(\mathcal{Z}$ is generalized Drinfeld-center)

• A generalization of anomaly in-flow: Callan Harvey, NPB 250 427 (1985) The theory described by fusion category $\mathcal F$ has a (non-invertible) gravitational anomaly (ie no UV completion) Kong Wen arXiv:1405.5858 (non-invertible) grav anomaly $=$ bulk topological order M Xiao-Gang Wen, MIT [Topological order and generalized symmetry](#page-0-0) 11/19

Classify $3+1D$ AB topological orders for bosons

- Consider a $3+1D$ topological order M where all point-like excitations are bosons (AB topological orders): $SFC = \mathcal{R}ep(G)$.
- We condense all the point-like excitations to obtain the canonical string-only boundary of $\mathcal M$.
- The string-only boundary is described by a pointed fusion 2-category $\mathcal F$ with only trivial morphisms. Boundary determines bulk: $\mathcal{M} = \mathcal{Z}(\mathcal{F})$.
- 3+1D AB topological orders are one-to-one classifed by pointed fusion 2-categories with only trivial morphisms, or by pairs (G, ω_A) , with \overline{G} a finite group and $\omega_4\in H^4(\overline{G};\mathbb{R}/\mathbb{Z})$

Lan Kong Wen, arXiv:1704.04221

 \bullet 3+1D Dijkraaf-Witten theories are also classified by pairs $(G, \omega_4), \;\; \omega_4 \in H^4(G;\mathbb{R}/\mathbb{Z}).$

All 3+1D AB topological orders are classified and realized by Dijkraaf-Witten theories. Dijkgraaf Witten, Comm. Math. Phys., 129 393, (1990)

• All 3+1D twisted higher gauge theories are equivalent to twisted 1-gauge theories, when all point-like excitations are bosonic

Classify $3+1D$ EF topological orders for bosons

• When some point-like excitations are fermions, they are described by SFC = s $\mathcal{R}ep(G_f)$, with $G_f = Z_2^f \wedge_{\epsilon_2} G_b$, $\epsilon_2 \in \mathcal{H}^2(G_b, Z_2)$.

 \rightarrow emergent-fermion (EF) topological order

- 3+1D EF topological orders \mathcal{C}_{EF}^4 are classified by a subset of unitary pointed fusion 2-categories, called EF 2-categories (describing the canonical boundary $\mathcal F$ from condensing all bosons). Lan-Wen arXiv:1801.08530 - The objects (boundary strings) and their fusion are described by a
- group $G_b \leftthreetimes_{\mu_2} Z_2^m$. G_b describes the **elementary** objects and $Z_2^m = \{1, s_{SC}\}$ is generated by a **descendant** object s_{SC} , which is the p -wave superconducting (SC) string formed by the fermions f . Kitaev cond-mat/0010440
- There is one simple fermionic 1-morphism f of quantum dimension 1 connecting every object g to itself (boundary fermion).
- I connecting every object g to itself (boundary fermion).
- There is one simple 1-morphism m of quantum dimension $\sqrt{2}$ connecting a pair of objects differ by s_{SC} (Majorana zero-mode).

Next adventure: a general theory for gapless state

A gapless state has emergent (and exact) symmetry:

- Group-like symmetries Heisenberg, Wigner, 1926 $U(1) \rightarrow$
- Anomalous symmetries 't Hooft, 1980 $U_R(1) \times U_L(1)$
- Higher-form symmetries Nussinov Ortiz 09; Gaiotto Kapustin Seiberg Willett 14
- Higher-group symmetries Kapustin Thorngren 2013
- Algebraic higher symmetry Kong Lan Wen Zhang Zheng 20 algebraic (higher) symmetry $=$ non-invertible (higher) symmetry $=$ fusion (higher) category symmetry $=$
	- Petkova Zuber 2000; Coquereaux Schieber 2001; Thorngren Wang 19; ... for 1+1D CFT
- (Non-invertible) gravitational anomalies Kong Wen 2014; Ji Wen 2019
- Conjecture: The maximal emergent (generalized) symmetry largely determine the gapless states (ie CFT with $\omega \sim k$). A classification of maximal emergent (generalized) symmetries \rightarrow A classification of gapless states (CFTs). Chatterjee Ji Wen arXiv:2212.14432 What is the general theory for all those generalized symmetries, which can be beyond group and higher group?

Symmetry/Topological-Order correspondence

- A (generalized) symmetry corresponds to:
- $Z_n(\mathcal{D}_n)$ - an **isomorphic decomposition** $\mathcal{D}_n \cong \mathcal{C}_n \boxtimes_{\mathcal{Z}_n(\mathcal{C}_n)} f_n^{(0)}$ Kong Wen Zheng arXiv:1502.01690; Freed Moore Teleman arXiv: 2209.07471
- *n n n−1,iso* . - a non-invertible gravitational anomaly
- a symmetry $+$ dual symmetry $+$ braiding Ji Wen arXiv:1912.13492 Conservation/fusion-ring of symmetry charges $=$ symmetry Conservation/fusion-ring of symmetry defects $=$ dual-symmetry
- a **gappable-boundary topological order** in one higher dimension Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178
- a Braided fusion higher category in trivial Witt class Thorngren Wang arXiv:1912.02817 (1+1D); Kong Lan Wen Zhang Zheng arXiv:2005.14178. \rightarrow a unified frame work to classify SSB, TO, SPT, SET phases.
- a **topological skeleton** in QFT Kong Zheng arXiv:2011.02859
- an algebra of patch commutant operators.

Kong Zheng arXiv:2201.05726; Chatterjee Wen arXiv:2203.03596

 \mathcal{D}_n \overline{f} _{$n-1$} iso

f

 $Z_n(C_n)$ *n (0)*

Xiao-Gang Wen, MIT [Topological order and generalized symmetry](#page-0-0) Theory 16/19

Symmetry \sim non-invertible gravitational anomaly

- A symmetry is generated by an unitary operators U that commute with the Hamiltonian: $I/H = HII$.
- We consider a symmetric system (with lattice UV completion) restricted in the **symmetric sub-Hilbert space**

 $UV_{\text{symmetric}} = V_{\text{symmetric}}$.

Look at a symmetry as an algebra of local symmetric operators

- The symmetry transformation U acts trivially within $V_{symmetric}$. How to know there is a symmetry? How to identify the symmetry?
- The total Hilbert space V_{tot} has a tensor product decomposition $\mathcal{V}_{\mathsf{tot}} = \otimes_i \mathcal{V}_i$, where i labels sites, due to the lattice UV completion.
- The symmetric sub-Hilbert space $V_{symmetric}$ does not have a tensor product decomposition $\mathcal{V}_{\mathsf{symmetric}} \neq \otimes_i \mathcal{V}_i$, indicating the presence of a symmetry.
- Lack of tensor product decomposition \rightarrow gravitational anomaly.

→ symmetry ∼= non-invertible gravitational anomaly

Symmetry \cong topological order in one higher dim

- Gravitational anomaly $=$ topo. order in one higher dim
- The total boundary Hilbert space of a topologically ordered state has no tensor product decomposition. Yang etal arXiv:1309.4596 Lack of tensor product decomposition is described by boundary of topological order Systems with a (generalized) symmetry (restricted within $V_{\text{symmetric}}$) can be fully and exactly simulated by boundaries of a topological order, called symmetry-TO (with lattice UV completion) or symmetry TFT.

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178 Apruzzi Bonetti Etxebarria Hosseini Schafer-Nameki arXiv:2112.02092

- Symmetry-TO or symmetry TFT was originally called **categorical** symmetry in Ji Wen arXiv:1912.13492; Kong etal arXiv:2005.14178

\rightarrow Symm/TO correspondence

Summary

Gapped phases of matter in $n + 1$ -dim spacetime \leftrightarrow Topological orders in $n + 1$ -dim spacetime \leftrightarrow Non-degenerate braided fusion *n*-category \leftrightarrow Non-invertible gravitational anomaly in n-dim spacetime \leftrightarrow Generalized symmetry in n -dim spacetime \leftrightarrow Gapless phase (CFT) in *n*-dim spacetime

Symmetry is a shadow of topological order in one higher dimension

Xiao-Gang Wen, MIT [Topological order and generalized symmetry](#page-0-0) Theory 19/19