
Topological order
and generalized symmetry
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Local quantum system and gapped quantum phase

• Definition: A local quantum system is described by (VN ,HN)
VN : a Hilbert space with a tensor structure VN = ⊗N

i=1Vi

HN : a local Hamiltonian acting on VN :
HN =

∑
Ôij

ε −> 0

∆

subspace
ground−state −>finite gap  01

• A gapped ground state (a concept for N → ∞ limit) has
∆ → finite non-zero and ϵ → 0. A gapped ground state is not a
single vector in VN , but a subspace Vgrnd space ⊂ VN .

• Two gapped Hamiltonian H(0) and H(1) are equivalent if they are
connected by a path H(τ), τ ∈ [0, 1] of gapped Hamiltonians.
Their ground states are also equivalent. The equivalence classes of
gapped ground states are gapped quantum phases of matter

• Phases of matter is a central issue in condensed matter physics
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Symmetry breaking phases and beyond →
topologically ordered phases

• For a long time, we thought that non-trivial gapped phases exist
only when the Hamiltonians have a symmetry: WHW † = H , where
the unitary operators W form a symmetry group GH .

ε −> 0

∆

subspace
ground−state −>finite gap  

A classification: Gapped quantum phases are
classified by a pair (GH ,GΨ) (GΨ ⊂ GH):
GH is the symmetry group of Hamiltonian.
GΨ is the group that acts trivially in ground state subspace

• In 1989, we realized that non-trivial gapped phases of matter exist
even without symmetry, ie GH = {id} → notion of Topological
order. Examples include chiral spin states and fraction
quantum Hall (FQH) states. Wen, PRB 40 7387 (89); IJMP 4 239 (90)
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What is topological order?

1 2

g=0

g=1

g=2

GSD=D GSD=DGSD=1
ε −> 0

∆

subspace
ground−state −>finite gap  

.

• How to extract macroscopic character
(topological invariants) from
complicated many-body wavefunction
Ψ(x1, · · · , x1020)

Put the gapped system on space with various topologies,
and measure the ground state degeneracy → topological
order
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Robust ground state degeneracy→phase of matter

Objection: Ground state degeneracy (GSD) on S2 ̸= GSD on T 2

coming from the motion of center of mass. GSD is just a finite size
effect, which does not reflect the thermodynamic phase of matter.

• We showed that the ground state degeneracy is robust
against any local perturbations. GSD can change only
after a phase transition → The robust ground state
degeneracy characterize new phases of matter
→ topological (=robust) order. Wen Niu PRB 41, 9377 (90)

• The microscopic mechanism of superconductivity: electron pairing
and their condensation

The microscopic mechanism of topological
order is long range entanglement

Wen, PRB 40 7387 (89); IJMPB 4, 239 (90). Chen Gu Wen arXiv:1004.3835

For a many-body state |Ψ⟩ =
∑

mi
Ψ(m1, ...,m1023)|{mi}⟩, knowing

all its overlapping parts still cannot determine the whole state |Ψ⟩.
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Theory of topo. order (long range entanglement)

Symmetry breaking orders are described by group theory. What
theory describes topological orders (long range entanglement)?

There are two approaches:
• Ground states: Robust degenerate ground states form vector
bundles on moduli spaces of gapped Hamiltonians → moduli
bundle theory for topological orders.

Wen, IJMPB 4, 239 (90); Wen Niu PRB 41, 9377 (90)

1 2

g=0

g=1

g=2

GSD=D GSD=DGSD=1 j i

αi j

k

• Excitations: The anyons are described by their fusion and
braiding → modular tensor category theory for topological
orders Moore Seiberg CMP 123 177 (89). Witten, CMP 121 352 (89)
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Moduli bundle theory of topological order

The important data is the connections of ground-state vector
bundle on moduli space (space of gapped H ’s).

ε −> 0

∆

subspace
ground−state −>finite gap  

.

MCG

.

• Non-Abelian holonomy (unitary matrix) along
contractable loops in moduli space →
a diagonal U(1) factor acting on the
degenerate ground states → gravitational Chern-Simons term
→ chiral central charge c of edge state

• Non-Abelian holonomy (unitary matrix) along
non-contractable loops in moduli space (deform a
system such that the deformed system is connected to the
original system by a coordinate transformation) → S ,T unitary
matrices acting on the degenerate ground states → projective
representation of mapping-class-group (which is
SL(2,Z) for torus, generated by s : (x , y) → (−y , x),
t : (x , y) → (x + y , y) ) Wen, PRB 40 7387 (89); IJMPB 4, 239 (90).
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Modular tensor category theory for anyons

and 2+1D topological orders

.

.

• Excitation in 2+1D topological order → Braided
fusion category (or modular tensor category
MTC) → A theory for 2+1D topological orders for
bosons. rational CFT → TQFT → MTC

Moore-Seiberg CMP 123 177 (89); Witten, CMP 121 352 (89)

• In higher dimensions, topological excitations can be
point-like, string-like, etc , which can fuse and braid →

- Topological excitations are described by non-degenerate
braided fusion n-categories.

- This leads a theory and a classification of topological orders in n
spacial dimensions (up to invertible topological orders).

Lan Kong Wen, arXiv:1704.04221 for 3+1D
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Classify 2+1D bosonic topological orders (TOs)

Using moduli bundle theory (ie SL(2,Z) representations), plus
input from modular tensor category (MTC), we can classify MTCs,
ie 2+1D bosonic topological orders (up to invertible E (8) states):
# of anyon types (rank) 1 2 3 4 5 6 7 8 9 10 11

# of 2+1D TOs 1 4 12 18 10 50 28 64 81 76 44

# of Abelian TOs 1 2 2 9 2 4 2 20 4 4 2
# of non-Abelian TOs 0 2 10 9 8 46 26 44 77 72 42

# of prime TOs 1 4 12 8 10 10 28 20 20 40 44

Rowell Stong Wang, arXiv:0712.1377: up to rank 4
Bruillard Ng Rowell Wang, arXiv:1507.05139: up to rank 5

Ng Rowell Wang Wen, arXiv:2203.14829: up to rank 6
Ng Rowell Wen, arXiv:2308.09670: up to rank 11

• This classifies all 2+1D gapped phases for bosonic systems
without symmetry, with 11 topological excitations or less.
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Classify 3+1D bosonic topological orders

(ie non-degenerate braided fusion 2-category)

SFC=Rep(G)

excitations above ground state

trivial topological

Unitary braided fusion category

loops

s=1/2
SFC=sRep(G)

excitations above ground state

trivial topological

Unitary braided fusion category

loops

• A 3+1D topological order in bosonic system with no symmetry
has point-like and string-like excitations = an unitary
non-degenerate braided fusion 2-category.

• The point-like excitations have trivial mutual statistics and are
bosons or fermions described by symmetric fusion category
(SFC). Due to Tanaka duality, the point-like excitations are
described by representations of a group G or Zf

2 ⋋ Gb.
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Topological holographic principle

.

String holographic principle: Susskind hep-th/9409089

boundary CFT = bulk AdS gravity Maldacena hep-th/9711200

.

• Holographic principle of topological order:
Boundary determines bulk,
but bulk does not determine boundary

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690

The excitations in a n + 1D topological order are
described by a braided fusion n-category M. The excitations on its
gapped boundary of are described by a fusion n-category F
F determines M: Z(F) = M (Z is generalized Drinfeld-center)

• A generalization of anomaly in-flow: Callan Harvey, NPB 250 427 (1985)

The theory described by fusion category F has a (non-invertible)
gravitational anomaly (ie no UV completion) Kong Wen arXiv:1405.5858

(non-invertible) grav anomaly = bulk topological order M
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Classify 3+1D AB topological orders for bosons

• Consider a 3+1D topological order M where all point-like
excitations are bosons (AB topological orders): SFC = Rep(G ).

• We condense all the point-like excitations to obtain the canonical
string-only boundary of M.

• The string-only boundary is described by a pointed fusion
2-category F with only trivial morphisms. Boundary determines
bulk: M = Z(F).

• 3+1D AB topological orders are one-to-one
classifed by pointed fusion 2-categories with
only trivial morphisms, or by pairs (G , ω4),
with G a finite group and ω4 ∈ H4(G ;R/Z)

Lan Kong Wen, arXiv:1704.04221
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Physical implications

• 3+1D Dijkraaf-Witten theories are also
classified by pairs (G , ω4), ω4 ∈ H4(G ;R/Z).

All 3+1D AB topological orders are
classified and realized by Dijkraaf-Witten theories.

Dijkgraaf Witten, Comm. Math. Phys., 129 393, (1990)

• All 3+1D twisted higher gauge theories are equivalent to
twisted 1-gauge theories, when all point-like excitations are
bosonic
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Classify 3+1D EF topological orders for bosons
• When some point-like excitations are fermions, they are described
by SFC = sRep(Gf ), with Gf = Z f

2 ⋋ϵ2 Gb, ϵ2 ∈ H2(Gb,Z2).
→ emergent-fermion (EF) topological order

• 3+1D EF topological orders C4
EF are classified by

a subset of unitary pointed fusion 2-categories,
called EF 2-categories (describing the canonical
boundary F from condensing all bosons). Lan-Wen arXiv:1801.08530

- The objects (boundary strings) and their fusion are described by a
group Gb ⋋µ2 Z

m
2 . Gb describes the elementary objects and

Zm
2 = {1, sSC} is generated by a descendant object sSC , which is

the p-wave superconducting (SC) string formed by the fermions f .
Kitaev cond-mat/0010440

- There is one simple fermionic 1-morphism f of quantum dimension
1 connecting every object g to itself (boundary fermion).

-- There is one simple 1-morphism m of quantum dimension
√
2

connecting a pair of objects differ by sSC (Majorana zero-mode).
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Next adventure: a general theory for gapless state

k

ψ ψL R

A gapless state has emergent (and exact) symmetry:

- Group-like symmetries Heisenberg, Wigner, 1926 U(1) →
- Anomalous symmetries ’t Hooft, 1980 UR(1)× UL(1)
- Higher-form symmetries Nussinov Ortiz 09; Gaiotto Kapustin Seiberg Willett 14

- Higher-group symmetries Kapustin Thorngren 2013

- Algebraic higher symmetry Kong Lan Wen Zhang Zheng 20

algebraic (higher) symmetry = non-invertible (higher) symmetry
= fusion (higher) category symmetry = ... ...

Petkova Zuber 2000; Coquereaux Schieber 2001; Thorngren Wang 19; ... for 1+1D CFT

- (Non-invertible) gravitational anomalies Kong Wen 2014; Ji Wen 2019

• Conjecture: The maximal emergent (generalized) symmetry
largely determine the gapless states (ie CFT with ω ∼ k).
A classification of maximal emergent (generalized) symmetries → A
classification of gapless states (CFTs). Chatterjee Ji Wen arXiv:2212.14432

What is the general theory for all those generalized symmetries,
which can be beyond group and higher group?
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Symmetry/Topological-Order correspondence

CD

f

f

nZ  (D  )n

nZ  (C  )n

(1)

n
(0)

n n
n−1,iso .

A (generalized) symmetry corresponds to:

- an isomorphic decomposition Dn
∼= Cn ⊠Zn(Cn) f

(0)
n

Kong Wen Zheng arXiv:1502.01690; Freed Moore Teleman arXiv: 2209.07471

- a non-invertible gravitational anomaly Ji Wen arXiv:1905.13279

- a symmetry + dual symmetry + braiding Ji Wen arXiv:1912.13492

Conservation/fusion-ring of symmetry charges = symmetry
Conservation/fusion-ring of symmetry defects = dual-symmetry

- a gappable-boundary topological order in one higher dimension
Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178

- a Braided fusion higher category in trivial Witt class
Thorngren Wang arXiv:1912.02817 (1+1D); Kong Lan Wen Zhang Zheng arXiv:2005.14178.
→ a unified frame work to classify SSB, TO, SPT, SET phases.

- a topological skeleton in QFT Kong Zheng arXiv:2011.02859

- an algebra of patch commutant operators.
Kong Zheng arXiv:2201.05726; Chatterjee Wen arXiv:2203.03596
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Symmetry ∼ non-invertible gravitational anomaly

• A symmetry is generated by an unitary operators U that commute
with the Hamiltonian: UH = HU .

• We consider a symmetric system (with lattice UV completion)
restricted in the symmetric sub-Hilbert space

UVsymmetric = Vsymmetric.
Look at a symmetry as an algebra of local symmetric operators

• The symmetry transformation U acts trivially within Vsymmetric.
How to know there is a symmetry? How to identify the symmetry?

- The total Hilbert space Vtot has a tensor product decomposition
Vtot = ⊗iVi , where i labels sites, due to the lattice UV completion.

- The symmetric sub-Hilbert space Vsymmetric does not have a tensor
product decomposition Vsymmetric ̸= ⊗iVi , indicating the presence of
a symmetry.

- Lack of tensor product decomposition → gravitational anomaly.
→ symmetry ∼= non-invertible gravitational anomaly
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Symmetry ∼= topological order in one higher dim

• Gravitational anomaly = topo. order in one higher dim
Kong Wen arXiv:1405.5858

bulk gap −>   

all boundary exc   .

with
boundary

grav anomaly
generalized

topological
order

bulk

.

- The total boundary Hilbert space of a
topologically ordered state has no tensor
product decomposition. Yang etal arXiv:1309.4596

Lack of tensor product decomposition is
described by boundary of topological order
Systems with a (generalized) symmetry
(restricted within Vsymmetric) can be fully
and exactly simulated by boundaries of a
topological order, called symmetry-TO (with
lattice UV completion) or symmetry TFT.

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178

Apruzzi Bonetti Etxebarria Hosseini Schafer-Nameki arXiv:2112.02092

- Symmetry-TO or symmetry TFT was originally called categorical
symmetry in Ji Wen arXiv:1912.13492; Kong etal arXiv:2005.14178

→ Symm/TO correspondence
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Summary

Gapped phases of matter in n + 1-dim spacetime ↔
Topological orders in n + 1-dim spacetime ↔
Non-degenerate braided fusion n-category ↔
Non-invertible gravitational anomaly in n-dim spacetime ↔
Generalized symmetry in n-dim spacetime ↔
Gapless phase (CFT) in n-dim spacetime

Symmetry is a shadow of
topological order
in one higher dimension
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