

Local quantum system and gapped quantum phase

- **Definition**: A local quantum system is described by $(\mathcal{V}_N, \mathcal{H}_N)$
 - \mathcal{V}_N : a Hilbert space with a tensor structure $\mathcal{V}_N = \bigotimes_{i=1}^N \mathcal{V}_i$
 - H_N : a local Hamiltonian acting on \mathcal{V}_N :

 $H_N = \sum \hat{O}_{ii}$

- A gapped ground state (a concept for N → ∞ limit) has
 Δ → finite non-zero and ε → 0. A gapped ground state is not a single vector in V_N, but a subspace V_{grnd space} ⊂ V_N.
- Two gapped Hamiltonian H(0) and H(1) are equivalent if they are connected by a path H(τ), τ ∈ [0, 1] of gapped Hamiltonians. Their ground states are also equivalent. The equivalence classes of gapped ground states are gapped quantum phases of matter
- Phases of matter is a central issue in condensed matter physics
 Xiao-Gang Wen, MIT
 Topological order and generalized symmetry 2/19

Symmetry breaking phases and beyond \rightarrow topologically ordered phases

• For a long time, we thought that non-trivial gapped phases exist only when the Hamiltonians have a symmetry: $WHW^{\dagger} = H$, where the unitary operators W form a symmetry group G_{H} .

A classification: Gapped quantum phases are classified by a pair (G_H, G_{Ψ}) $(G_{\Psi} \subset G_H)$: G_H is the symmetry group of Hamiltonian. G_{Ψ} is the group that acts trivially in ground state subspace $\epsilon \to 0$

• In 1989, we realized that non-trivial gapped phases of matter exist even without symmetry, *ie* $G_H = \{id\} \rightarrow notion of Topological order.$ Examples include chiral spin states and fraction quantum Hall (FQH) states. Wen, PRB 40 7387 (89); IJMP 4 239 (90)

What is topological order?

 How to extract macroscopic character (topological invariants) from complicated many-body wavefunction $\Psi(\boldsymbol{x}_1,\cdots,\boldsymbol{x}_{10^{20}})$

¹E. Witten, Commun. Math. Phys. 121, 351 (1989); 117, 353 (1988).

- ²Y. Hosotani, Report No. IAS-HEP-89/8, 1989 (unpublished); G. V. Dunne, R. Jackiw, and C. A. Trungenberg, Report No. MIT-CTP-1711, 1989 (unpublished); S. Elitzur, G. Moore, A. Schwimmer, and N. Seiberg, Report No. IASSNS-HEP-89/20, 1989 (unpublished).
- ³V. Kalmeyer and R. Laughlin, Phys. Rev. Lett. 59, 2095 (1988); X. G. Wen and A. Zee (unpublished); P. W. Anderson (unpublished); P. Wiegmann, in Physics of Low Dimensional Systems, edited by S. Lundqvist and N. K. Nilsson (World Scientific, Singapore, 1989).
- ⁴X. G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989); D. Khveshchenko and P. Wiegmann (unpublished). ⁵G. Baskaran and P. W. Anderson, Phys. Rev. B 37, 580 (1988).

Put the gapped system on space with various topologies, and measure the ground state degeneracy \rightarrow topological order

Vacuum degeneracy of chiral spin states in compactified space

X. G. Wen

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106 (Received 10 May 1989)

A chiral spin state is not only characterized by the T and P order parameter E_{123} $-S_1 (S_2 \times S_3)$, it is also characterized by an integer k. In this paper we show that this integer k can be determined from the vacuum degeneracy of the chiral spin state on compactified spaces, On a Riemann surface with genus g the vacuum degeneracy of the chiral spin state is found to be $2k^g$. Among those vacuum states, some k^g states have $\langle E_{123} \rangle > 0$, while other k^g states have $\langle E_{123} \rangle < 0$. The dependence of the vacuum degeneracy on the topology of the space reflects some sort of topological ordering in the chiral spin state. In general, the topological ordering in a system is classified by topological theories.

Xiao-Gang Wen, MIT

Robust ground state degeneracy \rightarrow phase of matter

- **Objection**: Ground state degeneracy (GSD) on $S^2 \neq$ GSD on T^2 coming from the motion of center of mass. GSD is just a finite size effect, which does not reflect the thermodynamic phase of matter.
- We showed that the ground state degeneracy is robust against any local perturbations. GSD can change only after a phase transition → The robust ground state degeneracy characterize new phases of matter
 → topological (=robust) order. Wen Niu PRI

Wen Niu PRB 41, 9377 (90)

• The microscopic mechanism of superconductivity: electron pairing and their condensation

The microscopic mechanism of topological order is **long range entanglement**

WHOLE = $\sum parts + ?$

Wen, PRB **40** 7387 (89); IJMPB 4, 239 (90). Chen Gu Wen arXiv:1004.3835 For a many-body state $|\Psi\rangle = \sum_{m_i} \Psi(m_1, ..., m_{10^{23}}) |\{m_i\}\rangle$, knowing all its overlapping parts still cannot determine the whole state $|\Psi\rangle$.

Xiao-Gang Wen, MIT

Theory of topo. order (long range entanglement)

Symmetry breaking orders are described by group theory. What theory describes topological orders (long range entanglement)?

There are two approaches:

 Ground states: Robust degenerate ground states form vector bundles on moduli spaces of gapped Hamiltonians → moduli bundle theory for topological orders.

Wen, IJMPB 4, 239 (90); Wen Niu PRB 41, 9377 (90)

 Excitations: The anyons are described by their fusion and braiding → modular tensor category theory for topological orders
 Moore Seiberg CMP 123 177 (89). Witten, CMP 121 352 (89)

Moduli bundle theory of topological order

The important data is the **connections** of ground-state vector bundle on moduli space (space of gapped H's). Non-Abelian holonomy (unitary matrix) along Δ ->finite gap ground-state contractable loops in moduli space \rightarrow subspace e -> 0a diagonal U(1) factor acting on the degenerate ground states \rightarrow gravitational Chern-Simons term \rightarrow chiral central charge *c* of edge state Non-Abelian holonomy (unitary matrix) along non-contractable loops in moduli space (deform a MCG system such that the deformed system is connected to the original system by a coordinate transformation) \rightarrow S, T unitary matrices acting on the degenerate ground states \rightarrow **projective** representation of mapping-class-group (which is $SL(2,\mathbb{Z})$ for torus, generated by $s: (x, y) \to (-y, x)$, $t: (x, y) \rightarrow (x + y, y)$ Wen, PRB 40 7387 (89); IJMPB 4, 239 (90). Xiao-Gang Wen, MIT Topological order and generalized symmetry 7/19

Modular tensor category theory for anyons and 2+1D topological orders

• Excitation in 2+1D topological order \rightarrow **Braided** fusion category (or modular tensor category **MTC**) \rightarrow A theory for 2+1D topological orders for bosons. rational CFT \rightarrow TQFT \rightarrow MTC Moore-Seiberg CMP 123 177 (89); Witten, CMP 121 352 (89)

- Topological excitations are described by **non-degenerate** braided fusion *n*-categories.
- This leads a theory and a classification of topological orders in nspacial dimensions (up to invertible topological orders).

Lan Kong Wen, arXiv:1704.04221 for 3+1D

Classify 2+1D bosonic topological orders (TOs)

Using moduli bundle theory (*ie* $SL(2, \mathbb{Z})$ representations), plus input from modular tensor category (MTC), we can classify MTCs, *ie* 2+1D bosonic topological orders (up to invertible E(8) states):

# of anyon types (rank)	1	2	3	4	5	6	7	8	9	10	11
$\# ext{ of } 2+1 ext{D TOs}$	1	4	12	18	10	50	28	64	81	76	44
# of Abelian TOs	1	2	2	9	2	4	2	20	4	4	2
# of non-Abelian TOs	0	2	10	9	8	46	26	44	77	72	42
# of prime TOs	1	4	12	8	10	10	28	20	20	40	44

Rowell Stong Wang, arXiv:0712.1377: up to rank 4 Bruillard Ng Rowell Wang, arXiv:1507.05139: up to rank 5 Ng Rowell Wang Wen, arXiv:2203.14829: up to rank 6 Ng Rowell Wen, arXiv:2308.09670: up to rank 11

• This classifies all 2+1D gapped phases for bosonic systems without symmetry, with 11 topological excitations or less.

Classify 3+1D bosonic topological orders (*ie* non-degenerate braided fusion 2-category)

- A 3+1D topological order in bosonic system with no symmetry has point-like and string-like excitations = an unitary non-degenerate braided fusion 2-category.
- The point-like excitations have trivial mutual statistics and are bosons or fermions described by symmetric fusion category (SFC). Due to Tanaka duality, the point-like excitations are described by representations of a group *G* or Z^f₂ ∧ G_b.

Topological holographic principle

String holographic principle: Susskind hep-th/9409089 boundary CFT = bulk AdS gravity Maldacena hep-th/9711200

• Holographic principle of topological order: Boundary determines bulk,

but bulk does not determine boundary

Kong Wen arXiv:1405.5858; Kong Wen Zheng arXiv:1502.01690 The excitations in a n + 1D topological order are described by a braided fusion *n*-category \mathcal{M} . The excitations on its gapped boundary of are described by a fusion *n*-category \mathcal{F} \mathcal{F} determines \mathcal{M} : $\mathcal{Z}(\mathcal{F}) = \mathcal{M}$ (\mathcal{Z} is generalized Drinfeld-center)

• A generalization of anomaly in-flow: Callan Harvey, NPB 250 427 (1985) The theory described by fusion category \mathcal{F} has a (non-invertible) gravitational anomaly (*ie* no UV completion) Kong Wen arXiv:1405.5858 (non-invertible) grav anomaly = bulk topological order \mathcal{M}

Xiao-Gang Wen, MIT

Classify 3+1D AB topological orders for bosons

- Consider a 3+1D topological order M where all point-like excitations are bosons (AB topological orders): SFC = Rep(G).
- We condense all the point-like excitations to obtain the canonical string-only boundary of \mathcal{M} .
- The string-only boundary is described by a pointed fusion 2-category *F* with only trivial morphisms. Boundary determines bulk: M = 2(*F*).
- 3+1D AB topological orders are one-to-one classifed by pointed fusion 2-categories with only trivial morphisms, or by pairs (G, ω₄), with G a finite group and ω₄ ∈ H⁴(G; ℝ/Z)

Lan Kong Wen, arXiv:1704.04221

 3+1D Dijkraaf-Witten theories are also classified by pairs (G, ω₄), ω₄ ∈ H⁴(G; ℝ/ℤ).

All 3+1D AB topological orders are classified and realized by Dijkraaf-Witten theories. Dijkgraaf Witten, Comm. Math. Phys., **129** 393, (1990)

• All 3+1D twisted higher gauge theories are equivalent to twisted 1-gauge theories, when all point-like excitations are bosonic

Classify 3+1D EF topological orders for bosons

• When some point-like excitations are fermions, they are described by SFC = $s \mathcal{R}ep(G_f)$, with $G_f = Z_2^f \times_{\epsilon_2} G_b$, $\epsilon_2 \in \mathcal{H}^2(G_b, Z_2)$.

 \rightarrow emergent-fermion (EF) topological order

- 3+1D EF topological orders C_{EF}^4 are classified by a subset of unitary pointed fusion 2-categories, called EF 2-categories (describing the canonical boundary \mathcal{F} from condensing all bosons). Lan-Wen arXiv:1801.08530
- The objects (boundary strings) and their fusion are described by a group $G_b >_{\mu_2} Z_2^m$. G_b describes the **elementary** objects and $Z_2^m = \{\mathbf{1}, s_{SC}\}$ is generated by a **descendant** object s_{SC} , which is the *p*-wave superconducting (SC) string formed by the fermions *f*. Kitaev cond-mat/0010440
- There is one simple fermionic 1-morphism *f* of quantum dimension 1 connecting every object *g* to itself (boundary fermion).
- There is one simple 1-morphism m of quantum dimension $\sqrt{2}$ connecting a pair of objects differ by s_{SC} (Majorana zero-mode).

Xiao-Gang Wen, MIT

Next adventure: a general theory for gapless state

A gapless state has emergent (and exact) symmetry:

- Group-like symmetries Heisenberg, Wigner, 1926 U(1)
 ightarrow
- Anomalous symmetries 't Hooft, 1980 $U_R(1) imes U_L(1)$
- Higher-form symmetries Nussinov Ortiz 09; Gaiotto Kapustin Seiberg Willett 14
- Higher-group symmetries Kapustin Thorngren 2013
- Algebraic higher symmetry Kong Lan Wen Zhang Zheng 20 algebraic (higher) symmetry = non-invertible (higher) symmetry
 - = fusion (higher) category symmetry =

Petkova Zuber 2000; Coquereaux Schieber 2001; Thorngren Wang 19; ... for 1+1D CFT

- (Non-invertible) gravitational anomalies Kong Wen 2014; Ji Wen 2019
- Conjecture: The maximal emergent (generalized) symmetry largely determine the gapless states (*ie* CFT with ω ~ k). A classification of maximal emergent (generalized) symmetries → A classification of gapless states (CFTs). Chatterjee Ji Wen arXiv:2212.14432 What is the general theory for all those generalized symmetries, which can be beyond group and higher group?

Xiao-Gang Wen, MIT

 Ψ_L Ψ_R k

Symmetry/Topological-Order correspondence

- A (generalized) symmetry corresponds to:
- an isomorphic decomposition $\mathcal{D}_n \cong \mathcal{C}_n \boxtimes_{\mathcal{Z}_n(\mathcal{C}_n)} f_n^{(0)}$ Kong Wen Zheng arXiv:1502.01690; Freed Moore Teleman arXiv: 2209.07471 $\mathcal{D}_n = \overline{f}_n^{(1)} \mathcal{C}_n$
- a non-invertible gravitational anomaly Ji Wen arXiv:1905.13279
- a symmetry + dual symmetry + braiding Ji Wen arXiv:1912.13492 Conservation/fusion-ring of **symmetry charges** = symmetry Conservation/fusion-ring of **symmetry defects** = dual-symmetry
- a gappable-boundary topological order in one higher dimension

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178 - a Braided fusion higher category in trivial Witt class

- Thorngren Wang arXiv:1912.02817 (1+1D); Kong Lan Wen Zhang Zheng arXiv:2005.14178.
 - \rightarrow a unified frame work to classify SSB, TO, SPT, SET phases.
- a topological skeleton in QFT Kong Zheng arXiv:2011.02859
- an algebra of patch commutant operators.

Kong Zheng arXiv:2201.05726; Chatterjee Wen arXiv:2203.03596

 $Z_n(\mathcal{D}_n)$

Topological order and generalized symmetry

Symmetry \sim non-invertible gravitational anomaly

- A symmetry is generated by an unitary operators U that commute with the Hamiltonian: UH = HU.
- We consider a symmetric system (with lattice UV completion) restricted in the symmetric sub-Hilbert space

 $U\mathcal{V}_{symmetric} = \mathcal{V}_{symmetric}.$

Look at a symmetry as an algebra of local symmetric operators

- The symmetry transformation U acts trivially within $\mathcal{V}_{symmetric}$. How to know there is a symmetry? How to identify the symmetry?
- The total Hilbert space \mathcal{V}_{tot} has a tensor product decomposition $\mathcal{V}_{tot} = \bigotimes_i \mathcal{V}_i$, where *i* labels sites, due to the lattice UV completion.
- The symmetric sub-Hilbert space $\mathcal{V}_{symmetric}$ does not have a tensor product decomposition $\mathcal{V}_{symmetric} \neq \bigotimes_i \mathcal{V}_i$, indicating the presence of a symmetry.
- Lack of tensor product decomposition \rightarrow gravitational anomaly.

\rightarrow symmetry \cong non-invertible gravitational anomaly

Xiao-Gang Wen, MIT

Symmetry \cong topological order in one higher dim

- Gravitational anomaly = topo. order in one higher dim
- The total boundary Hilbert space of a topologically ordered state has no tensor product decomposition. Yang etal arXiv:1309.4596 Lack of tensor product decomposition is described by boundary of topological order Systems with a (generalized) symmetry (restricted within $\mathcal{V}_{symmetric}$) can be fully and exactly simulated by boundaries of a topological order, called symmetry-TO (with lattice UV completion) or symmetry TFT.

Ji Wen arXiv:1912.13492; Kong Lan Wen Zhang Zheng arXiv:2005.14178 Apruzzi Bonetti Etxebarria Hosseini Schafer-Nameki arXiv:2112.02092

- Symmetry-TO or symmetry TFT was originally called **categorical symmetry** in Ji Wen arXiv:1912.13492; Kong etal arXiv:2005.14178

\rightarrow Symm/TO correspondence

Xiao-Gang Wen, MIT

Summary

Gapped phases of matter in n + 1-dim spacetime \leftrightarrow Topological orders in n + 1-dim spacetime \leftrightarrow Non-degenerate braided fusion *n*-category \leftrightarrow Non-invertible gravitational anomaly in *n*-dim spacetime \leftrightarrow Generalized symmetry in *n*-dim spacetime \leftrightarrow Gapless phase (CFT) in *n*-dim spacetime

Symmetry is a shadow of topological order in one higher dimension

